En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 37M10 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The class of integer-valued trawl processes has recently been introduced for modelling univariate and multivariate integer-valued time series with short or long memory.

In this talk, I will discuss recent developments with regards to model estimation, model selection and forecasting of such processes. The new methods will be illustrated in an empirical study of high-frequency financial data.

This is joint work with Mikkel Bennedsen (Aarhus University), Asger Lunde (Aarhus University) and Neil Shephard (Harvard University).[-]
The class of integer-valued trawl processes has recently been introduced for modelling univariate and multivariate integer-valued time series with short or long memory.

In this talk, I will discuss recent developments with regards to model estimation, model selection and forecasting of such processes. The new methods will be illustrated in an empirical study of high-frequency financial data.

This is joint work with Mikkel Bennedsen (Aarhus ...[+]

37M10 ; 60G10 ; 60G55 ; 62F99 ; 62M10 ; 62P05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
It is generally admitted that financial time series have heavy tailed marginal distributions. When time series models are fitted on such data, the non-existence of appropriate moments may invalidate standard statistical tools used for inference. Moreover, the existence of moments can be crucial for risk management. This talk considers testing the existence of moments in the framework of standard and augmented GARCH models. In the case of standard GARCH, even-moment conditions involve moments of the independent innovation process. We propose tests for the existence of moments of the returns process that are based on the joint asymptotic distribution of the estimator of the volatility parameters and empirical moments of the residuals. To achieve efficiency gains we consider non Gaussian QML estimators founded on reparametrizations of the GARCH model, and we discuss optimality issues. We also consider augmented GARCH processes, for which moment conditions are less explicit. We establish the asymptotic distribution of the empirical moment Generating function (MGF) of the model, defined as the MGF of the random autoregressive coefficient in the volatility dynamics, from which a test is deduced. An alternative test is based on the estimation of the maximal exponent characterizing the existence of moments. Our results will be illustrated with Monte Carlo experiments and real financial data.[-]
It is generally admitted that financial time series have heavy tailed marginal distributions. When time series models are fitted on such data, the non-existence of appropriate moments may invalidate standard statistical tools used for inference. Moreover, the existence of moments can be crucial for risk management. This talk considers testing the existence of moments in the framework of standard and augmented GARCH models. In the case of ...[+]

37M10 ; 62M10 ; 62P20

Sélection Signaler une erreur