En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 15B35 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
There is the same number of $n \times n$ alternating sign matrices (ASMs) as there is of descending plane partitions (DPPs) with parts no greater than $n$, but finding an explicit bijection is, despite many efforts, an open problem for about $40$ years now. So far, four pairs of statistics that have the same joint distribution have been identified. We introduce extensions of ASMs and of DPPs along with $n+3$ pairs of statistics that have the same joint distribution. The ASM-DPP equinumerosity is obtained as an easy consequence by considering the $(-1)$enumerations of these extended objects with respect to one pair of the $n+3$ pairs of statistics. One important tool of our proof is a multivariate generalization of the operator formula for the number of monotone triangles with prescribed bottom row that generalizes Schur functions. Joint work with Florian Aigner.[-]
There is the same number of $n \times n$ alternating sign matrices (ASMs) as there is of descending plane partitions (DPPs) with parts no greater than $n$, but finding an explicit bijection is, despite many efforts, an open problem for about $40$ years now. So far, four pairs of statistics that have the same joint distribution have been identified. We introduce extensions of ASMs and of DPPs along with $n+3$ pairs of statistics that have the ...[+]

05A05 ; 05A15 ; 05A19 ; 15B35 ; 82B20 ; 82B23

Sélection Signaler une erreur