Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The behaviour of infinite translation surfaces is, in many regards, very different from the finite case. For example, the geodesic flow is often not recurrent or is not even defined for infinite time in a generic direction.
However, we show that if one focuses on a class of infinite translation surfaces that exclude the obvious counter-examples, one can adapted the proof of Kerckhoff, Masur, and Smillie and show that the geodesic flow is uniquely ergodic in almost every direction. We call this class of surface essentially finite.
(joint work with Anja Randecker).
[-]
The behaviour of infinite translation surfaces is, in many regards, very different from the finite case. For example, the geodesic flow is often not recurrent or is not even defined for infinite time in a generic direction.
However, we show that if one focuses on a class of infinite translation surfaces that exclude the obvious counter-examples, one can adapted the proof of Kerckhoff, Masur, and Smillie and show that the geodesic flow is ...
[+]
37D40 ; 51A40 ; 37A25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
Given a quantum Hamiltonian, I will explain how the dynamical properties of the underlying classical Hamiltonian affect the behaviour of quantum eigenstates in the semiclassical limit. I will mostly focus on two opposite dynamical paradigms: completely integrable systems and chaotic ones. I will introduce tools from microlocal analysis and show how to use them in order to illustrate the classical-quantum correspondance and to compare properties of completely integrable and chaotic systems.
[-]
Given a quantum Hamiltonian, I will explain how the dynamical properties of the underlying classical Hamiltonian affect the behaviour of quantum eigenstates in the semiclassical limit. I will mostly focus on two opposite dynamical paradigms: completely integrable systems and chaotic ones. I will introduce tools from microlocal analysis and show how to use them in order to illustrate the classical-quantum correspondance and to compare properties ...
[+]
81Q50 ; 37N20 ; 35P20 ; 58J51 ; 58J50 ; 37D40
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
Given a quantum Hamiltonian, I will explain how the dynamical properties of the underlying classical Hamiltonian affect the behaviour of quantum eigenstates in the semiclassical limit. I will mostly focus on two opposite dynamical paradigms: completely integrable systems and chaotic ones. I will introduce tools from microlocal analysis and show how to use them in order to illustrate the classical-quantum correspondance and to compare properties of completely integrable and chaotic systems.
[-]
Given a quantum Hamiltonian, I will explain how the dynamical properties of the underlying classical Hamiltonian affect the behaviour of quantum eigenstates in the semiclassical limit. I will mostly focus on two opposite dynamical paradigms: completely integrable systems and chaotic ones. I will introduce tools from microlocal analysis and show how to use them in order to illustrate the classical-quantum correspondance and to compare properties ...
[+]
81Q50 ; 37N20 ; 35P20 ; 58J51 ; 58J50 ; 37D40
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A (pseudo)-Anosov flow on a 3-manifold can be understood through its orbit space, a bifoliated plane with a natural action of the fundamental group of the manifold. In this minicourse, we will describe techniques to study the dynamics of these orbit space actions as a means to understand the topological theory and the classification of (pseudo)Anosov flows in dimension 3. This leads to a more general theory of 'Anosov-like' actions on bifoliated planes, which form a rich class of discrete dynamical systems including but not limited to the orbit space actions from flows.
[-]
A (pseudo)-Anosov flow on a 3-manifold can be understood through its orbit space, a bifoliated plane with a natural action of the fundamental group of the manifold. In this minicourse, we will describe techniques to study the dynamics of these orbit space actions as a means to understand the topological theory and the classification of (pseudo)Anosov flows in dimension 3. This leads to a more general theory of 'Anosov-like' actions on bifoliated ...
[+]
37D40 ; 57S25 ; 37B05 ; 37C10 ; 37C27 ; 37D20
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The aim of this lecture series is to study some ergodic properties of the geodesic flow on surfaces without conjugate points. In the first two lectures we give an introduction the geodesic flow and discuss the geometric properties of the surface that are needed to study, this includes the action of the fundamental group on the universal cover, the Gromov boundary and Morse Lemma. In the third lecture we will introduce the Poincaré series and define the measure of maximal entropy via Patterson-Sullivan construction. In the fourth lecture, we will show that the measure of maximal entropy is unique and we will use the cross ratio function to prove the geodesic flow is mixing with respect to the constructed measure. In the last lecture, we will prove the prime geodesic theorem of the surface. This is based on two joint work with Gerhard Knieper and Vaughn Climenhaga.
[-]
The aim of this lecture series is to study some ergodic properties of the geodesic flow on surfaces without conjugate points. In the first two lectures we give an introduction the geodesic flow and discuss the geometric properties of the surface that are needed to study, this includes the action of the fundamental group on the universal cover, the Gromov boundary and Morse Lemma. In the third lecture we will introduce the Poincaré series and ...
[+]
37C35 ; 37D40 ; 53C22
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The aim of this lecture series is to study some ergodic properties of the geodesic flow on surfaces without conjugate points. In the first two lectures we give an introduction the geodesic flow and discuss the geometric properties of the surface that are needed to study,this includes the action of the fundamental group on the universal cover, the Gromov boundary and Morse Lemma. In the third lecture we will introduce the Poincaré series and define the measure of maximal entropy via Patterson-Sullivan construction. In the fourth lecture, we will show that the measure of maximal entropy is unique and we will use the cross ratio function to prove the geodesic flow is mixing with respect to the constructed measure. In the last lecture, we will prove the prime geodesic theorem of the surface. This is based on two joint work with Gerhard Knieper and Vaughn Climenhaga.
[-]
The aim of this lecture series is to study some ergodic properties of the geodesic flow on surfaces without conjugate points. In the first two lectures we give an introduction the geodesic flow and discuss the geometric properties of the surface that are needed to study,this includes the action of the fundamental group on the universal cover, the Gromov boundary and Morse Lemma. In the third lecture we will introduce the Poincaré series and ...
[+]
37C35 ; 37D40 ; 53C22
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The aim of this lecture series is to study some ergodic properties of the geodesic flow on surfaces without conjugate points. In the first two lectures we give an introduction the geodesic flow and discuss the geometric properties of the surface that are needed to study, this includes the action of the fundamental group on the universal cover, the Gromov boundary and Morse Lemma. In the third lecture we will introduce the Poincaré series and define the measure of maximal entropy via Patterson-Sullivan construction. In the fourth lecture, we will show that the measure of maximal entropy is unique and we will use the cross ratio function to prove the geodesic flow is mixing with respect to the constructed measure. In the last lecture, we will prove the prime geodesic theorem of the surface. This is based on two joint work with Gerhard Knieper and Vaughn Climenhaga.
[-]
The aim of this lecture series is to study some ergodic properties of the geodesic flow on surfaces without conjugate points. In the first two lectures we give an introduction the geodesic flow and discuss the geometric properties of the surface that are needed to study, this includes the action of the fundamental group on the universal cover, the Gromov boundary and Morse Lemma. In the third lecture we will introduce the Poincaré series and ...
[+]
37C35 ; 37D40 ; 53C22
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This is a work with Yves Colin de Verdière, Charlotte Dietze and Maarten De Hoop, motivated by recent works by M. De Hoop on inverse problems for sound wave propagation in gas giant planets. On such planets, the speed of sound is isotropic and tends to zero at the surface. Geometrically, this corresponds to a Riemannian manifold with a boundary whose metric blows up near the boundary. With appropriate variable changes, we can reduce the study of the Laplacian?Beltrami to that of a kind of sub-Riemannian Laplacian. In this talk, I will explain how to approach the spectral analysis of such operators, and in particular how to calculate WeylÕs law.
[-]
This is a work with Yves Colin de Verdière, Charlotte Dietze and Maarten De Hoop, motivated by recent works by M. De Hoop on inverse problems for sound wave propagation in gas giant planets. On such planets, the speed of sound is isotropic and tends to zero at the surface. Geometrically, this corresponds to a Riemannian manifold with a boundary whose metric blows up near the boundary. With appropriate variable changes, we can reduce the study of ...
[+]
11F72 ; 58C40 ; 53C22 ; 37D40 ; 53C65 ; 35R30