En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Berthé, Valérie 20 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Subshifts of finite type are of high interest from a computational point of view, since they can be described by a finite amount of information - a set of forbidden patterns that defines the subshift - and thus decidability and algorithmic questions can be addressed. Given an SFT $X$, the simplest question one can formulate is the following: does $X$ contain a configuration? This is the so-called domino problem, or emptiness problem: for a given finitely presented group $0$, is there an algorithm that determines if the group $G$ is tilable with a finite set of tiles? In this lecture I will start with a presentation of two different proofs of the undecidability of the domino problem on $Z^2$. Then we will discuss the case of finitely generated groups. Finally, the emptiness problem for general subshifts will be tackled.[-]
Subshifts of finite type are of high interest from a computational point of view, since they can be described by a finite amount of information - a set of forbidden patterns that defines the subshift - and thus decidability and algorithmic questions can be addressed. Given an SFT $X$, the simplest question one can formulate is the following: does $X$ contain a configuration? This is the so-called domino problem, or emptiness problem: for a given ...[+]

68Q45 ; 03B25 ; 37B50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Amenable groups - Lecture 2 - Bartholdi, Laurent (Auteur de la conférence) | CIRM H

Multi angle

I shall discuss old and new results on amenability of groups, and more generally G-sets. This notion traces back to von Neumann in his study of the Hausdorff-Banach-Tarski paradox, and grew into one of the fundamental properties a group may / may not have -- each time with important consequences.
Lecture 1. I will present the classical notions and equivalent definitions of amenability, with emphasis on group actions and on combinatorial aspects: Means, Folner sets, random walks, and paradoxical decompositions.
Lecture 2. I will describe recent work by de la Salle et al. leading to a quite general criterion for amenability, as well as some still open problems. In particular, I will show that full topological groups of minimal Z-shifts are amenable.
Lecture 3. I will explain links between amenability and cellular automata, in particular the "Garden of Eden" properties by Moore and Myhill: there is a characterization of amenable groups in terms of whether these classical theorems still hold. [-]
I shall discuss old and new results on amenability of groups, and more generally G-sets. This notion traces back to von Neumann in his study of the Hausdorff-Banach-Tarski paradox, and grew into one of the fundamental properties a group may / may not have -- each time with important consequences.
Lecture 1. I will present the classical notions and equivalent definitions of amenability, with emphasis on group actions and on combinatorial aspects: ...[+]

37B15 ; 37B10 ; 43A07 ; 68Q80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Symbolic bounded remainder sets - Berthé, Valérie (Auteur de la conférence) | CIRM H

Multi angle

Discrepancy is a measure of equidistribution for sequences of points. We consider here discrepancy in the setting of symbolic dynamics and we discuss the existence of bounded remainder sets for some families of zero entropy subshifts, from a topological dynamics viewpoint. A bounded remainder set is a set which yields bounded discrepancy, that is, the number of times it is visited differs by the expected time only by a constant. Bounded discrepancy provides particularly strong convergence properties of ergodic sums. It is also closely related to the notions of balance in word combinatorics.[-]
Discrepancy is a measure of equidistribution for sequences of points. We consider here discrepancy in the setting of symbolic dynamics and we discuss the existence of bounded remainder sets for some families of zero entropy subshifts, from a topological dynamics viewpoint. A bounded remainder set is a set which yields bounded discrepancy, that is, the number of times it is visited differs by the expected time only by a constant. Bounded ...[+]

37B10 ; 11K50 ; 37A30 ; 28A80 ; 11J70 ; 11K38

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Some algebraic tools in fractal geometry - Adiceam, Faustin (Auteur de la conférence) | CIRM H

Multi angle

The talk will present some recent advances at the crossroads between Number Theory and Fractal Geometry requiring the input of algebraic theories to estimate the measure and/or the factal dimension of sets emerging naturally in Diophantine Approximation. Examples include the proof of metric, uniform and quantitative versions of the Oppenheim conjecture generalised to the case of any homogeneous form and also the determination of the Hausdor dimension of the set of well approximable points lying on polynomially dened manifolds (i.e. on algebraic varieties).[-]
The talk will present some recent advances at the crossroads between Number Theory and Fractal Geometry requiring the input of algebraic theories to estimate the measure and/or the factal dimension of sets emerging naturally in Diophantine Approximation. Examples include the proof of metric, uniform and quantitative versions of the Oppenheim conjecture generalised to the case of any homogeneous form and also the determination of the Hausdor ...[+]

11D75 ; 11J25 ; 11P21

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, we adopt the viewpoint about fractional fields which is given in Lodhia and al. Fractional Gaussian fields: a survey, Probab. Surv. 13 (2016), 1-56. As example, we focus on random fields defined on the Sierpiński gasket but random fields defined on fractional metric spaces can also be considered. Hence, for $s \geq 0$, we consider the random measure $X=(-\Delta)^{-s} W$ where $\Delta$ is a Laplacian on the Sierpiński gasket $K$ equipped with its Hausdorff measure $\mu$ and where $W$ is a Gaussian random measure with intensity $\mu$. For a range of values of the parameter $s$, the random measure $X$ admits a Gaussian random field $(X(x))_{x \in K}$ as density with respect to $\mu$. Moreover, using entropy method, an upper bound of the modulus of continuity of $(X(x))_{x \in K}$ is obtained, which leads to the existence of a modification with Hölder sample paths. Along the way we prove sharp global Hölder regularity estimates for the fractional Riesz kernels on the gasket. In addition, the fractional Gaussian random field $X$ is invariant by the symmetries of the gasket. If time allows, some extension to $\alpha$-stable random fields will also be presented. Especially, for $s \geq s_0$ there still exists a modification of the $\alpha$-stable field $\mathrm{X}$ with Hölder sample paths whereas for $s< s_{0}$, such modification does not exist. This is a joint work with Fabrice Baudoin (University of Connecticut).[-]
In this talk, we adopt the viewpoint about fractional fields which is given in Lodhia and al. Fractional Gaussian fields: a survey, Probab. Surv. 13 (2016), 1-56. As example, we focus on random fields defined on the Sierpiński gasket but random fields defined on fractional metric spaces can also be considered. Hence, for $s \geq 0$, we consider the random measure $X=(-\Delta)^{-s} W$ where $\Delta$ is a Laplacian on the Sierpiński gasket $K$ ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We will cover some of the more important results from commutative and noncommutative algebra as far as applications to automatic sequences, pattern avoidance, and related areas. Well give an overview of some applications of these areas to the study of automatic and regular sequences and combinatorics on words.

11B85 ; 68Q45 ; 68R15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
An automorphism of a subshift $X$ is a self-homeomorphism of $X$ that commutes with the shift map. The study of these automorphisms started at the very beginning of the symbolic dynamics. For instance, the well known Curtis-Hedlund-Lyndon theorem asserts that each automorphism is a cellular automaton. The set of automorphisms forms a countable group that may be very complicated for mixing shift of finite type (SFT). The study of this group for low complexity subshifts has become very active in the last five years. Actually, for zero entropy subshift, this group is much more tame than in the SFT case. In a first lecture we will recall some striking property of this group for subshift of finite type. The second lecture is devoted to the description of this group for classical minimal sub shifts of zero entropy with sublinear complexity and for the family of Toeplitz subshifts. The last lecture concerns the algebraic properties of the automorphism group for subshifts with sub-exponential complexity. We will also explain why sonic group like the Baumslag-Solitar $BS(1,n)$ or $SL(d,Z), d >2$, can not embed into an automorphism group of a zero entropy subshift.[-]
An automorphism of a subshift $X$ is a self-homeomorphism of $X$ that commutes with the shift map. The study of these automorphisms started at the very beginning of the symbolic dynamics. For instance, the well known Curtis-Hedlund-Lyndon theorem asserts that each automorphism is a cellular automaton. The set of automorphisms forms a countable group that may be very complicated for mixing shift of finite type (SFT). The study of this group for ...[+]

37B10 ; 37B50 ; 37B15 ; 68Q80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The theorem of Büchi-Bruyère states that a subset of $N^d$ is $b$-recognizable if and only if it is $b$-definable. As a corollary, the first-order theory of $(N,+,V_b)$ is decidable (where $V_b(n)$ is the largest power of the base $b$ dividing $n$). This classical result is a powerful tool in order to show that many properties of $b$-automatic sequences are decidable. The first part of my lecture will be devoted to presenting this result and its applications to $b$-automatic sequences. Then I will move to $b$-regular sequences, which can be viewed as a generalization of $b$-automatic sequences to integer-valued sequences. I will explain bow first-order logic can be used to show that many enumeration problems of $b$-automatic sequences give rise to corresponding $b$-regular sequences. Finally, I will consider more general frameworks than integer bases and (try to) give a state of the art of the research in this domain.[-]
The theorem of Büchi-Bruyère states that a subset of $N^d$ is $b$-recognizable if and only if it is $b$-definable. As a corollary, the first-order theory of $(N,+,V_b)$ is decidable (where $V_b(n)$ is the largest power of the base $b$ dividing $n$). This classical result is a powerful tool in order to show that many properties of $b$-automatic sequences are decidable. The first part of my lecture will be devoted to presenting this result and its ...[+]

68R15 ; 11B85 ; 68Q45 ; 03B25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Dimension groups and recurrence for tree subshifts - Berthé, Valérie (Auteur de la conférence) | CIRM H

Multi angle

Dimension groups are invariants of orbital equivalence. We show in this lecture how to compute the dimension group of tree subshifts. Tree subshifts are defined in terms of extension graphs that describe the left and right extensions of factors of their languages: the extension graphs are trees. This class of subshifts includes classical families such as Sturmian, Arnoux-Rauzy subshifts, or else, codings of interval exchanges. We rely on return word properties for tree subshifts: every finite word in the language of a tree word admits exactly d return words, where d is the cardinality of the alphabet.
This is joint work with P. Cecchi, F. Dolce, F. Durand, J. Leroy, D. Perrin, S. Petite.[-]
Dimension groups are invariants of orbital equivalence. We show in this lecture how to compute the dimension group of tree subshifts. Tree subshifts are defined in terms of extension graphs that describe the left and right extensions of factors of their languages: the extension graphs are trees. This class of subshifts includes classical families such as Sturmian, Arnoux-Rauzy subshifts, or else, codings of interval exchanges. We rely on return ...[+]

37A20 ; 37B10 ; 68R15 ; 68Q45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Recent developments in finite rank systems - Donoso, Sebastián (Auteur de la conférence) | CIRM H

Virtualconference

I will comment on recent results concerning the topological properties of finite rank Cantor minimal systems. I will mention some ideas to estimate their word complexity and ask a few open problems.

54H20 ; 37B10 ; 37B20

Sélection Signaler une erreur