En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Fargues, Laurent 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Local Shimura varieties for $p$-adic fields - Weinstein, Jared (Auteur de la Conférence) | CIRM

Multi angle

We report on progress towards a theory of local Shimura varieties for $p$-adic fields, in parallel with the theory of local shtukas for $\mathbb{F}_q((t))$. Using perfectoid spaces (in particular Scholze's theory of "diamonds"), it is possible to give a unified definition of local shtukas which incorporates both the equal and unequal characteristic cases. Conjecturally, if G is a reductive group, the cohomology of a moduli space of local G-shtukas should realize the Langlands correspondence for G in a systematic way (along the lines described by V. Lafforgue for global stukas). This talk will draw heavily from ideas of Peter Scholze and Laurent Fargues.[-]
We report on progress towards a theory of local Shimura varieties for $p$-adic fields, in parallel with the theory of local shtukas for $\mathbb{F}_q((t))$. Using perfectoid spaces (in particular Scholze's theory of "diamonds"), it is possible to give a unified definition of local shtukas which incorporates both the equal and unequal characteristic cases. Conjecturally, if G is a reductive group, the cohomology of a moduli space of local ...[+]

14G35 ; 11S37

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
(joint work with Peter Scholze) In our joint work with Scholze we need to give a meaning to statements like "the stack of principal G-bundles on the curve is smooth of dimension 0" and construct "smooth perfectoid charts on it". The problem is that in the perfectoid world there is no infinitesimals and thus no Jacobian criterion that would allow us to define what is a smooth morphism. The good notion in this setting is the one of a cohomologically smooth morphism, a morphism that satisfies relative Poincaré duality. I will explain a Jacobian criterion of cohomological smoothness for moduli spaces of sections of smooth algebraic varieties over the curve that allows us to solve our problems.[-]
(joint work with Peter Scholze) In our joint work with Scholze we need to give a meaning to statements like "the stack of principal G-bundles on the curve is smooth of dimension 0" and construct "smooth perfectoid charts on it". The problem is that in the perfectoid world there is no infinitesimals and thus no Jacobian criterion that would allow us to define what is a smooth morphism. The good notion in this setting is the one of a coho...[+]

11F85 ; 11S31 ; 11R39 ; 14G22 ; 14H40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

$P$-adic cohomology of the Lubin-Tate tower - Scholze, Peter (Auteur de la Conférence) | CIRM

Multi angle

We prove a finiteness result on the $p$-adic cohomology of the Lubin-Tate tower, which allows one to go from mod $p$ and $p$-adic
$GL_n (F)$-representations to Galois representations (compatibly with some global cor-respondences).

14G22 ; 22E50 ; 14F30

Sélection Signaler une erreur