En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 37A25 17 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

A universal hypercyclic representation - Glasner, Eli (Author of the conference) | CIRM H

Post-edited

For any countable group, and also for any locally compact second countable, compactly generated topological group, $G$, there exists a "universal" hypercyclic representation on a Hilbert space, in the sense that it simultaneously models every possible ergodic probability measure preserving free action of $G$. I will discuss the original proof of this theorem (a joint work with Benjy Weiss) and then, at the end of the talk, say some words about the development of this idea and its applications as expounded in a subsequent work of Sophie Grivaux.[-]
For any countable group, and also for any locally compact second countable, compactly generated topological group, $G$, there exists a "universal" hypercyclic representation on a Hilbert space, in the sense that it simultaneously models every possible ergodic probability measure preserving free action of $G$. I will discuss the original proof of this theorem (a joint work with Benjy Weiss) and then, at the end of the talk, say some words about ...[+]

37A15 ; 37A05 ; 37A25 ; 37A30 ; 47A16 ; 47A67 ; 47D03

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Multiple ergodic theorems: old and new - Lecture 1 - Kra, Bryna (Author of the conference) | CIRM H

Post-edited

The classic mean ergodic theorem has been extended in numerous ways: multiple averages, polynomial iterates, weighted averages, along with combinations of these extensions. I will give an overview of these advances and the different techniques that have been used, focusing on convergence results and what can be said about the limits.

37A05 ; 37A25 ; 37A15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Multiple ergodic theorems: old and new - Lecture 2 - Kra, Bryna (Author of the conference) | CIRM H

Multi angle

The classic mean ergodic theorem has been extended in numerous ways: multiple averages, polynomial iterates, weighted averages, along with combinations of these extensions. I will give an overview of these advances and the different techniques that have been used, focusing on convergence results and what can be said about the limits.

37A05 ; 37A25 ; 37A15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Multiple ergodic theorems: old and new - Lecture 3 - Kra, Bryna (Author of the conference) | CIRM H

Multi angle

The classic mean ergodic theorem has been extended in numerous ways: multiple averages, polynomial iterates, weighted averages, along with combinations of these extensions. I will give an overview of these advances and the different techniques that have been used, focusing on convergence results and what can be said about the limits.

37A05 ; 37A25 ; 37A15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will discuss old and recent results on topological and measurable dynamics of diagonal and unipotent flows on frame bundles and unit tangent bundles over hyperbolic manifolds. The first lectures will be a good introduction to the subject for young researchers.

37D40 ; 37A17 ; 37A25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, we will prove the projective equidistribution of integral representations by quadratic norm forms in positive characteristic, with error terms, and deduce asymptotic counting results of these representations. We use the ergodic theory of lattice actions on Bruhat-Tits trees, and in particular the exponential decay of correlation of the geodesic flow on trees for Hölder variables coming from symbolic dynamics techniques.

20E08 ; 11J61 ; 37A25 ; 20G25 ; 37D40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The behaviour of infinite translation surfaces is, in many regards, very different from the finite case. For example, the geodesic flow is often not recurrent or is not even defined for infinite time in a generic direction.
However, we show that if one focuses on a class of infinite translation surfaces that exclude the obvious counter-examples, one can adapted the proof of Kerckhoff, Masur, and Smillie and show that the geodesic flow is uniquely ergodic in almost every direction. We call this class of surface essentially finite.
(joint work with Anja Randecker).[-]
The behaviour of infinite translation surfaces is, in many regards, very different from the finite case. For example, the geodesic flow is often not recurrent or is not even defined for infinite time in a generic direction.
However, we show that if one focuses on a class of infinite translation surfaces that exclude the obvious counter-examples, one can adapted the proof of Kerckhoff, Masur, and Smillie and show that the geodesic flow is ...[+]

37D40 ; 51A40 ; 37A25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider a Markov process living in some space E, and killed (penalized) at a rate depending on its position. In the last decade, several conditions have been given ensuring that the law of the process conditioned on survival converges to a quasi-stationary distribution exponentially fast in total variation distance. In this talk, we will present very simple examples of penalized Markov process whose conditional law cannot converge in total variation, and we will give a sufficient condition implying contraction and convergence of the conditional law in Wasserstein distance to a unique quasi-stationary distribution. Our criterion also imply a first-order expansion of the probability of survival, the ergodicity in Wasserstein distance of the Q-process, i.e. the process conditioned to never be killed, and quasi-ergodicity in Wasserstein distance. We then apply this criterion to several examples, including Bernoulli convolutions and piecewise deterministic Markov processes of the form of switched dynamical systems, for which convergence in total variation is not possible.
This is joint work with Edouard Strickler (CNRS, Université de Lorraine) and Denis Villemonais (Université de Lorraine).[-]
We consider a Markov process living in some space E, and killed (penalized) at a rate depending on its position. In the last decade, several conditions have been given ensuring that the law of the process conditioned on survival converges to a quasi-stationary distribution exponentially fast in total variation distance. In this talk, we will present very simple examples of penalized Markov process whose conditional law cannot converge in total ...[+]

37A25 ; 60B10 ; 60J25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Concentration is an important property of independent random variable, showing that any reasonable function of such variables does not vary a lot around its mean. Observables generated by the iteration of a chaotic enough dynamical system often share a lot of properties with independent random variables. In this survey talk, we discuss several situations where one can prove concentration for them, in uniformly or non-uniformly hyperbolic situations. We also explain why such a property is important to answer relevant geometric or dynamical questions.
concentration - martingales - dynamical systems - Young towers - uniform hyperbolicity - moment bounds[-]
Concentration is an important property of independent random variable, showing that any reasonable function of such variables does not vary a lot around its mean. Observables generated by the iteration of a chaotic enough dynamical system often share a lot of properties with independent random variables. In this survey talk, we discuss several situations where one can prove concentration for them, in uniformly or non-uniformly hyperbolic ...[+]

37A25 ; 37A50 ; 60F15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study law of rare events for random dynamical systems. We obtain an exponential law (with respect to the invariant measure of the skew-product) for super-polynomially mixing random dynamical systems.
For random subshifts of finite type, we analyze the distribution of hitting times with respect to the sample measures. We prove that with a superpolynomial decay of correlations one can get an exponential law for almost every point and with stronger mixing assumptions one can get a law of rare events depending on the extremal index for every point. (These are joint works with Benoit Saussol and Paulo Varandas, and Mike Todd).[-]
We study law of rare events for random dynamical systems. We obtain an exponential law (with respect to the invariant measure of the skew-product) for super-polynomially mixing random dynamical systems.
For random subshifts of finite type, we analyze the distribution of hitting times with respect to the sample measures. We prove that with a superpolynomial decay of correlations one can get an exponential law for almost every point and with ...[+]

37B20 ; 37A50 ; 37A25 ; 37Dxx

Bookmarks Report an error