En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 37B10 36 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Based on work done by Morse and Hedlund (1940) it was observed by Arnoux and Rauzy (1991) that the classical continued fraction algorithm provides a surprising link between arithmetic and diophantine properties of an irrational number $\alpha$, the rotation by $\alpha$ on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and combinatorial properties of the well known Sturmian sequences, a class of sequences on two letters with low subword complexity.
It has been conjectured since the early 1990ies that this correspondence carries over to generalized continued fraction algorithms, rotations on higher dimensional tori, and so-called $S$-adic sequences generated by substitutions. The idea of working towards this generalization is known as Rauzy's program. Although, starting with Rauzy (1982) a number of examples for such a generalization was devised, Cassaigne, Ferenczi, and Zamboni (2000) came up with a counterexample that showed the limitations of such a generalization.
Nevertheless, recently Berthé, Steiner, and Thuswaldner (2016) made some further progress on Rauzy's program and were able to set up a generalization of the above correspondences. They proved that the above conjecture is true under certain natural conditions. A prominent role in this generalization is played by tilings induced by generalizations of the classical Rauzy fractal introduced by Rauzy (1982).
Another idea which is related to the above results goes back to Artin (1924), who observed that the classical continued fraction algorithm and its natural extension can be viewed as a Poincaré section of the geodesic flow on the space $SL_2(\mathbb{Z}) \ SL_2(\mathbb{R})$. Arnoux and Fisher (2001) revisited Artin's idea and showed that the above mentioned correspondence between continued fractions, rotations, and Sturmian sequences can be interpreted in a very nice way in terms of an extension of this geodesic flow which they called the scenery flow. Currently, Arnoux et al. are setting up elements of a generalization of this connection as well.
It is the aim of my series of lectures to review the above results.[-]
Based on work done by Morse and Hedlund (1940) it was observed by Arnoux and Rauzy (1991) that the classical continued fraction algorithm provides a surprising link between arithmetic and diophantine properties of an irrational number $\alpha$, the rotation by $\alpha$ on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and combinatorial properties of the well known Sturmian sequences, a class of sequences on two letters with low subword ...[+]

11B83 ; 11K50 ; 37B10 ; 52C23 ; 53D25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
These lectures introduce the dynamical systems approach to tilings of Euclidean space, especially quasicrystalline tilings that have been constructed using a ‘supertile method'. Because tiling dynamics parallels one-dimensional symbolic dynamics, we discuss this case as well, highlighting the differences and similarities in the methods of study and the results that can be obtained.
In the first lecture we motivate the field with the discovery of quasicrystals, which led to D. Schectman's winning the 2011 Nobel Prize in Chemistry. Then we set up the basics of tiling dynamics, describing tiling spaces, a tiling metric, and the shift or translation actions. Shift-invariant and ergodic measures are discussed, along with fundamental topological and dynamical properties.
The second lecture brings in the supertile construction methods, including symbolic substitutions, self-similar tilings, $S$-adic systems, and fusion rules. Numerous examples are given, most of which are not the “standard” examples, and we identify many commonalities and differences between these interrelated methods of construction. Then we compare and contrast dynamical results for supertile systems, highlighting those key insights that can be adapted to all cases.
In the third lecture we investigate one of the many current tiling research areas: spectral theory. Schectman made his Nobel-prize-winning discovery using diffraction analysis, and studying the mathematical version has been quite fruitful. Spectral theory of tiling dynamical systems is also of broad interest. We describe how these types of spectral analysis are carried out, give examples, and discuss what is known and unknown about the relationship between dynamical and diffraction analysis. Special attention is paid to the “point spectrum”, which is related to eigenfunctions and also to the bright spots that appear on diffraction images.[-]
These lectures introduce the dynamical systems approach to tilings of Euclidean space, especially quasicrystalline tilings that have been constructed using a ‘supertile method'. Because tiling dynamics parallels one-dimensional symbolic dynamics, we discuss this case as well, highlighting the differences and similarities in the methods of study and the results that can be obtained.
In the first lecture we motivate the field with the discovery of ...[+]

37B50 ; 37B10 ; 52C23

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Dimension groups and recurrence for tree subshifts - Berthé, Valérie (Auteur de la Conférence) | CIRM H

Multi angle

Dimension groups are invariants of orbital equivalence. We show in this lecture how to compute the dimension group of tree subshifts. Tree subshifts are defined in terms of extension graphs that describe the left and right extensions of factors of their languages: the extension graphs are trees. This class of subshifts includes classical families such as Sturmian, Arnoux-Rauzy subshifts, or else, codings of interval exchanges. We rely on return word properties for tree subshifts: every finite word in the language of a tree word admits exactly d return words, where d is the cardinality of the alphabet.
This is joint work with P. Cecchi, F. Dolce, F. Durand, J. Leroy, D. Perrin, S. Petite.[-]
Dimension groups are invariants of orbital equivalence. We show in this lecture how to compute the dimension group of tree subshifts. Tree subshifts are defined in terms of extension graphs that describe the left and right extensions of factors of their languages: the extension graphs are trees. This class of subshifts includes classical families such as Sturmian, Arnoux-Rauzy subshifts, or else, codings of interval exchanges. We rely on return ...[+]

37A20 ; 37B10 ; 68R15 ; 68Q45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Beyond Bowen specification property - lecture 2 - Climenhaga, Vaughn (Auteur de la Conférence) | CIRM H

Multi angle

Rufus Bowen introduced the specification property for uniformly hyperbolic dynamical systems and used it to establish uniqueness of equilibrium states, including the measure of maximal entropy. After reviewing Bowen's argument, we will present our recent work on extending Bowen's approach to non-uniformly hyperbolic systems. We will describe the general result, which makes precise the notion of "entropy (orpressure) of obstructions to specification" using a decomposition of the space of finite-length orbit segments, and then survey various applications, including factors of beta-shifts, derived-from-Anosov diffeomorphisms, and geodesic flows in non-positive curvature and beyond.[-]
Rufus Bowen introduced the specification property for uniformly hyperbolic dynamical systems and used it to establish uniqueness of equilibrium states, including the measure of maximal entropy. After reviewing Bowen's argument, we will present our recent work on extending Bowen's approach to non-uniformly hyperbolic systems. We will describe the general result, which makes precise the notion of "entropy (orpressure) of obstructions to s...[+]

37D35 ; 37B10 ; 37B40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The aim of this lecture is to find good symbolic codings for translations on the $d$-dimensional torus that enjoy the well-known and nice properties of Sturmian sequences (as for instance low complexity and good local discrepancy properties, i.e., bounded remainder sets of any scale). Inspired by the approach of G. Rauzy we construct such codings by the use of multidimensional continued fraction algorithms that are realized by sequences of substitutions. This is joint work with V. Berthé and W. Steiner.[-]
The aim of this lecture is to find good symbolic codings for translations on the $d$-dimensional torus that enjoy the well-known and nice properties of Sturmian sequences (as for instance low complexity and good local discrepancy properties, i.e., bounded remainder sets of any scale). Inspired by the approach of G. Rauzy we construct such codings by the use of multidimensional continued fraction algorithms that are realized by sequences of ...[+]

37B10 ; 37A30 ; 11K50 ; 28A80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Tutorial on cellular automata - lecture 1 - Ollinger, Nicolas (Auteur de la Conférence) | CIRM H

Multi angle

This tutorial surveys computational aspects of cellular automata, a discrete dynamical model introduced by S. Ulam and J. von Neumann in the late 40s: a regular grid of finite state cells evolving synchronously according to a common local rule described by a finite automaton.

Formally, a cellular automaton is a tuple $(d, S, N, f)$ where $d \in \mathbb{N}$ is the dimension of the cellular space, $S$ is the finite set of states, $N \subseteq_{\text {finite }} \mathbb{Z}^d$ is the finite neighborhood and $f: S^N \rightarrow S$ is the local rule of the cellular automaton.

A configuration $c \in S^{\mathbb{Z}^d}$ is a coloring of the cellular space by states.

The global transition function $G: S^{\mathbb{Z}^d} \rightarrow S^{\mathbb{Z}^d}$ applies $f$ uniformly according to $N$, i.e. for every configuration $c \in S^{\mathbb{Z}^d}$ and every position $z \in \mathbb{Z}^d$ it holds
$$G(c)(z)=f\left(c\left(z+v_1\right), \ldots, c\left(z+v_m\right)\right) \quad \text { where } N=\left\{v_1, \ldots, v_m\right\} .$$
A space-time diagram $\Delta \in S^{\mathbb{Z}^d \times \mathbb{N}}$ is obtained by piling successive configurations of an orbit, i.e. for every time step $t \in \mathbb{N}$ it holds $\Delta_{t+1}=G\left(\Delta_t\right)$.

Computing inside the cellular space: The first part of the tutorial considers cellular automata as a universal model of computation. Several notions of universality are discussed: boolean circuit simulation, Turing universality, intrinsic universality. Special abilities of cellular automata as a model of massive parallelism are then investigated.

Computing properties of cellular automata: The second part of the tutorial considers properties of cellular automata and their computation. De Bruijn diagrams and associated regular languages are introduced as tools to decide injectivity and surjectivity of the global transition function in the one-dimensional case. Both immediate and dynamical properties are introduced, in particular the notion of limit set.

Computation and reduction: undecidability results: The last part of the tutorial considers computing by reduction to establish undecidability results on some properties of cellular automata: injectivity and surjectivity of the global transition function in higher dimensions, nilpotency and intrinsic universality in every dimension, a Rice's theorem for limit sets.[-]
This tutorial surveys computational aspects of cellular automata, a discrete dynamical model introduced by S. Ulam and J. von Neumann in the late 40s: a regular grid of finite state cells evolving synchronously according to a common local rule described by a finite automaton.

Formally, a cellular automaton is a tuple $(d, S, N, f)$ where $d \in \mathbb{N}$ is the dimension of the cellular space, $S$ is the finite set of states, $N \sub...[+]

68Q80 ; 68Q05 ; 68Q45 ; 37B10 ; 37B15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Around Cobham's theorem - Krawczyk, Elzbieta (Auteur de la Conférence) | CIRM H

Multi angle

We provide a complete characterisation of automaticity of uniformly recurrent substitutive sequences in terms of the incidence matrix of the return substitution of an underlying purely substitutive sequence. This gives an answer to a recent question of Allouche, Dekking and Queffélec in the uniformly recurrent case.

11B85 ; 37B10 ; 68R15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Symmetries in symbolic dynamics - Kra, Bryna (Auteur de la Conférence) | CIRM H

Multi angle

The automorphism group of a symbolic system captures its symmetries, reecting the dynamical behavior and the complexity of the system. It can be quite complicated: for example, for a topologically mixing shift of nite type, the automorphism group contains isomorphic copies of all nite groups and the free group on two generators and such behavior is common for shifts of high complexity. In the opposite setting of low complexity, there are numerous restrictions on the automorphism group, and for many classes of symbolic systems, it is known to be virtually abelian. I will give an overview of relations among dynamical properties of the system, algebraic properties of the automorphism group, and measurable properties of associated systems, all of which quickly lead to open questions.[-]
The automorphism group of a symbolic system captures its symmetries, reecting the dynamical behavior and the complexity of the system. It can be quite complicated: for example, for a topologically mixing shift of nite type, the automorphism group contains isomorphic copies of all nite groups and the free group on two generators and such behavior is common for shifts of high complexity. In the opposite setting of low complexity, there are ...[+]

37B10 ; 37A15 ; 37B50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We will consider (sub)shifts with complexity such that the difference from $n$ to $n+1$ is constant for all large $n$. The shifts that arise naturally from interval exchange transformations belong to this class. An interval exchange transformation on d intervals has at most $d/2$ ergodic probability measures. We look to establish the correct bound for shifts with constant complexity growth. To this end, we give our current bound and discuss further improvements when more assumptions are allowed. This is ongoing work with Michael Damron.[-]
We will consider (sub)shifts with complexity such that the difference from $n$ to $n+1$ is constant for all large $n$. The shifts that arise naturally from interval exchange transformations belong to this class. An interval exchange transformation on d intervals has at most $d/2$ ergodic probability measures. We look to establish the correct bound for shifts with constant complexity growth. To this end, we give our current bound and discuss ...[+]

37B10 ; 37A25 ; 68R15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
An automorphism of a subshift $X$ is a self-homeomorphism of $X$ that commutes with the shift map. The study of these automorphisms started at the very beginning of the symbolic dynamics. For instance, the well known Curtis-Hedlund-Lyndon theorem asserts that each automorphism is a cellular automaton. The set of automorphisms forms a countable group that may be very complicated for mixing shift of finite type (SFT). The study of this group for low complexity subshifts has become very active in the last five years. Actually, for zero entropy subshift, this group is much more tame than in the SFT case. In a first lecture we will recall some striking property of this group for subshift of finite type. The second lecture is devoted to the description of this group for classical minimal sub shifts of zero entropy with sublinear complexity and for the family of Toeplitz subshifts. The last lecture concerns the algebraic properties of the automorphism group for subshifts with sub-exponential complexity. We will also explain why sonic group like the Baumslag-Solitar $BS(1,n)$ or $SL(d,Z), d >2$, can not embed into an automorphism group of a zero entropy subshift.[-]
An automorphism of a subshift $X$ is a self-homeomorphism of $X$ that commutes with the shift map. The study of these automorphisms started at the very beginning of the symbolic dynamics. For instance, the well known Curtis-Hedlund-Lyndon theorem asserts that each automorphism is a cellular automaton. The set of automorphisms forms a countable group that may be very complicated for mixing shift of finite type (SFT). The study of this group for ...[+]

37B10 ; 37B50 ; 37B15 ; 68Q80

Sélection Signaler une erreur