En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 46E35 8 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The "positivity phenomenon" for Bessel sequences, frames and Riesz bases $\left(u_k\right)$ are studied in $L^2$ spaces over the compacts of homogeneous (Coifman-Weiss) type $\Omega=(\Omega, \rho, \mu)$. Under some relations between three basic metric-measure dimensions of $\Omega$, we obtain asymptotics for the mass moving norms $\left\|u_k\right\|_{K R}$ (Kantorovich-Rubinstein), as well as for singular numbers of the Lipschitz and Hajlasz-Sobolev embeddings. Our main observation shows that, quantitatively, the rate of the convergence $\left\|u_k\right\|_{K R} \longrightarrow 0$ depends on an interplay between geometric doubling and measure doubling/halving exponents. The "more homogeneous" is the space, the sharper are the results.[-]
The "positivity phenomenon" for Bessel sequences, frames and Riesz bases $\left(u_k\right)$ are studied in $L^2$ spaces over the compacts of homogeneous (Coifman-Weiss) type $\Omega=(\Omega, \rho, \mu)$. Under some relations between three basic metric-measure dimensions of $\Omega$, we obtain asymptotics for the mass moving norms $\left\|u_k\right\|_{K R}$ (Kantorovich-Rubinstein), as well as for singular numbers of the Lipschitz and Ha...[+]

42C15 ; 43A85 ; 46E35 ; 47B10 ; 54E35 ; 46B15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Unexpected norms on BMO and the Dirichlet problem - Egert, Moritz (Auteur de la Conférence) | CIRM H

Multi angle

One of the many meaningful equivalent norms on BMO uses a Carleson-measure condition on the gradient of the Poisson extension. This is closely related to the Dirichlet problem for the Laplacian in the upper half-space with boundary data in BMO. The Poisson semigroup provides the unique solution in appropriate classes, and it is bounded on BMO, that is, it propagates the space boundary space in the transversal direction. If the tangential Laplacian is replaced by a general elliptic operator in divergence form, boundedness of the Poisson semigroup on BMO can fail in any dimension n ≥ 3. Somewhat unexpectedly, its gradient persists to give rise to a Carleson measure with norm equivalent to the BMO-norm at the boundary in dimensions n = 3, 4 and hence a unique solution to the corresponding Dirichlet problem. In my talk, I will try to explain the broader context behind this phenomenon and why we still do not know if the result is sharp.
Based on joint work with (of course) Pascal. It is Chapter 18 of our book but you will not have to read the seventeen preceding chapters to follow.[-]
One of the many meaningful equivalent norms on BMO uses a Carleson-measure condition on the gradient of the Poisson extension. This is closely related to the Dirichlet problem for the Laplacian in the upper half-space with boundary data in BMO. The Poisson semigroup provides the unique solution in appropriate classes, and it is bounded on BMO, that is, it propagates the space boundary space in the transversal direction. If the tangential ...[+]

35J25 ; 42B35 ; 47A60 ; 42B30 ; 42B37 ; 35J57 ; 35J67 ; 47D06 ; 35J46 ; 42B25 ; 46E35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In the fist part of the talk, we will look to some statistical inverse problems for which the natural framework is no more an Euclidian one.
In the second part we will try to give the initial construction of (not orthogonal) wavelets -of the 80 - by Frazier, Jawerth,Weiss, before the Yves Meyer ORTHOGONAL wavelets theory.
In the third part we will propose a construction of a geometric wavelet theory. In the Euclidian case, Fourier transform plays a fundamental role. In the geometric situation this role is given to some "Laplacian operator" with some properties.
In the last part we will show that the previous theory could help to revisit the topic of regularity of Gaussian processes, and to give a criterium only based on the regularity of the covariance operator.[-]
In the fist part of the talk, we will look to some statistical inverse problems for which the natural framework is no more an Euclidian one.
In the second part we will try to give the initial construction of (not orthogonal) wavelets -of the 80 - by Frazier, Jawerth,Weiss, before the Yves Meyer ORTHOGONAL wavelets theory.
In the third part we will propose a construction of a geometric wavelet theory. In the Euclidian case, Fourier transform ...[+]

42C15 ; 43A85 ; 46E35 ; 58J35 ; 43A80 ; 62G05 ; 62G10 ; 62G20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This lecture is devoted to the characterization of convergence rates in some simple equations with mean field nonlinear couplings, like the Keller-Segel and Nernst-Planck systems, Cucker-Smale type models, and the Vlasov-Poisson-Fokker-Planck equation. The key point is the use of Lyapunov functionals adapted to the nonlinear version of the model to produce a functional framework adapted to the asymptotic regime and the corresponding spectral analysis.[-]
This lecture is devoted to the characterization of convergence rates in some simple equations with mean field nonlinear couplings, like the Keller-Segel and Nernst-Planck systems, Cucker-Smale type models, and the Vlasov-Poisson-Fokker-Planck equation. The key point is the use of Lyapunov functionals adapted to the nonlinear version of the model to produce a functional framework adapted to the asymptotic regime and the corresponding spectral ...[+]

82C40 ; 35H10 ; 35P15 ; 35Q84 ; 35R09 ; 47G20 ; 82C21 ; 82D10 ; 82D37 ; 76P05 ; 35K65 ; 35Q84 ; 46E35 ; 35K55 ; 35Q70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Gradient bounds for the heat kernel on the Vicsek set - Chen, Li (Auteur de la Conférence) | CIRM H

Multi angle

In this talk, we discuss functional inequalities and gradient bounds for the heat kernel on the Vicsek set. The Vicsek set has both fractal and tree structure, whereas neither analogue of curvature nor obvious differential structure exists. We introduce Sobolev spaces in that setting and prove several characterizations based on a metric, a discretization or a weak gradient approach. We also obtain $L^{p}$ Poincaré inequalities and pointwise gradient bounds for the heat kernel. These properties have important applications in harmonic analysis like Sobolev inequalities and the Riesz transform. Moreover, several of our techniques and results apply to more general fractals and trees.[-]
In this talk, we discuss functional inequalities and gradient bounds for the heat kernel on the Vicsek set. The Vicsek set has both fractal and tree structure, whereas neither analogue of curvature nor obvious differential structure exists. We introduce Sobolev spaces in that setting and prove several characterizations based on a metric, a discretization or a weak gradient approach. We also obtain $L^{p}$ Poincaré inequalities and pointwise ...[+]

46E35 ; 35B65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk we consider the Laplace operator with Dirichlet boundary conditions on a smooth domain. We prove that it has a bounded $H^\infty$-calculus on weighted $L^p$-spaces for power weights which fall outside the classical class of $A_p$-weights. Furthermore, we characterize the domain of the operator and derive several consequences on elliptic and parabolic regularity. In particular, we obtain a new maximal regularity result for the heat equation with very rough inhomogeneous boundary data.
The talk is based on joint work with Nick Lindemulder.[-]
In this talk we consider the Laplace operator with Dirichlet boundary conditions on a smooth domain. We prove that it has a bounded $H^\infty$-calculus on weighted $L^p$-spaces for power weights which fall outside the classical class of $A_p$-weights. Furthermore, we characterize the domain of the operator and derive several consequences on elliptic and parabolic regularity. In particular, we obtain a new maximal regularity result for the heat ...[+]

46E35 ; 42B25 ; 46B70 ; 46E40 ; 47A60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Regularity in Besov spaces of parabolic PDEs - Schneider, Cornelia (Auteur de la Conférence) | CIRM H

Multi angle

This talk is concerned with the regularity of solutions to parabolic evolution equations.
Special attention is paid to the smoothness in the specific scales $\ B^{r}_{\tau,\tau}, \ \frac{1}{\tau}=\frac{r}{d}+\frac{1}{p}\ $ of Besov spaces. The regularity in these spaces determines the approximation order that can be achieved by fully space-time adaptive approximation schemes.

35K65 ; 35K55 ; 46E35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur