En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Bordenave, Charles 17 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk will focus on the fluctuations of a linear spectral statistic around its mean for $P\left(W_N, D_N\right)$ where $P$ is a polynomial, $W_N$ a Wigner matrix and $D_N$ a deterministic diagonal matrix. I will first consider the case when $P\left(W_N,D_N\right)=W_N+D_N$, based on a joint work with M. Février (U. Paris-Saclay). In the general case of $P$ a selfadjoint noncommutative polynomial, I will present results for the special case of the Stieltjes transform, based on a joint work with S. Belinschi (CNRS, U. Toulouse), M. Capitaine (CNRS,U. Toulouse) and M. Février (U. Paris-Saclay).[-]
This talk will focus on the fluctuations of a linear spectral statistic around its mean for $P\left(W_N, D_N\right)$ where $P$ is a polynomial, $W_N$ a Wigner matrix and $D_N$ a deterministic diagonal matrix. I will first consider the case when $P\left(W_N,D_N\right)=W_N+D_N$, based on a joint work with M. Février (U. Paris-Saclay). In the general case of $P$ a selfadjoint noncommutative polynomial, I will present results for the special case of ...[+]

60B20 ; 15B52 ; 60F05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider independent Hermitian heavy-tailed random matrices. Our model includes the Lévy matrices as well as sparse random matrices with O(1) non-zero entries per row. By representing these matrices as weighted graphs, we derive a large deviation principle for key macroscopic observables. Specifically, we focus on the empirical distribution of eigenvalues, the joint neighborhood distribution, and the joint traffic distribution. As an application, we define a notion of microstates entropy for traffic distribution which is additive under free traffic convolution.[-]
We consider independent Hermitian heavy-tailed random matrices. Our model includes the Lévy matrices as well as sparse random matrices with O(1) non-zero entries per row. By representing these matrices as weighted graphs, we derive a large deviation principle for key macroscopic observables. Specifically, we focus on the empirical distribution of eigenvalues, the joint neighborhood distribution, and the joint traffic distribution. As an ...[+]

60B20 ; 60F10 ; 46L54

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will present a recent amazing new approach to norm convergence of random matrices due to Chen, Garza Vargas, Tropp, and van Handel, and the way Michael Magee and I apply and expand it, together with fine topological expansion, to obtain norm convergence for random matrix models coming from representations of SU(n) of quasi-exponential dimension.

15A52 ; 46L54 ; 46L05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Wilson loops are the basic observables of Yang—Mills theory, and their expectation is rigorously defined on the Euclidean plane and on a compact Riemannian surface. Focusing on the case where the structure group is the unitary group, I will present a formula that computes any Wilson loop expectation in almost purely combinatorial terms, thanks to the dictionary between unitary and symmetric quantities provided by the Schur-Weyl duality.

81T13 ; 05E10 ; 60G65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Over the last couple of years, it has become evident that matrix-valued semicircular elements establish strong links between free probability theory and noncommutative algebra. Another surprising connection of this kind was found in a recently finished project with Roland Speicher. We have shown that the Fuglede-Kadison determinant of an arbitrary matrix-valued semicircular element is essentially given by the capacity of its associated covariance map. In addition, we have improved a lower bound by Garg, Gurvits, Oliveira, and Widgerson on this capacity, by making it dimension-independent. Besides analytic tools from operator-valued free probability, these are the crucial ingredients in some novel algorithmic solution to the noncommutative Edmonds' problem which we described in collaboration with Johannes Hoffmann. In my talk, I will present our work and provide the background on free probability and noncommutative algebra required for this purpose.[-]
Over the last couple of years, it has become evident that matrix-valued semicircular elements establish strong links between free probability theory and noncommutative algebra. Another surprising connection of this kind was found in a recently finished project with Roland Speicher. We have shown that the Fuglede-Kadison determinant of an arbitrary matrix-valued semicircular element is essentially given by the capacity of its associated ...[+]

46L54 ; 65J15 ; 12E15 ; 15A22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
L'objectif de ce mini-cours est de présenter de la façon la plus élémentaire possible la convergence faible locale des graphes introduite par Benjamini et Schramm en 2001 et développée par Aldous et Steele (2004), Aldous et Lyons (2007). Nous montrerons comment cette notion peut être utilisée dans des dénombrements asymptotiques et dans des problèmes d'optimisation combinatoire.

05C80 ; 60C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
A non-backtracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The non-backtracking matrix of a graph is indexed by its directed edges and can be used to count non-backtracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we study the largest eigenvalues of the non-backtracking matrix of the Erdos-Renyi random graph and of the Stochastic Block Model in the regime where the number of edges is proportional to the number of vertices. Our results confirm the "spectral redemption" conjecture that community detection can be made on the basis of the leading eigenvectors above the feasibility threshold.[-]
A non-backtracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The non-backtracking matrix of a graph is indexed by its directed edges and can be used to count non-backtracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we ...[+]

05C50 ; 05C80 ; 68T05 ; 91D30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random irregular graphs are nearly Ramanujan - Puder, Doron (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We prove that a measure on $[-d,d]$ is the spectral measure of a factor of i.i.d. process on a vertex-transitive infinite graph if and only if it is absolutely continuous with respect to the spectral measure of the graph. Moreover, we show that the set of spectral measures of factor of i.i.d. processes and that of $\bar{d}_2$-limits of factor of i.i.d. processes are the same.

05C80 ; 60G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show that random walk on a stationary random graph with positive anchored expansion and exponential volume growth has positive speed. We also show that two families of random triangulations of the hyperbolic plane, the hyperbolic Poisson Voronoi tessellation and the hyperbolic Poisson Delaunay triangulation, have 1-skeletons with positive anchored expansion. As a consequence, we show that the simple random walks on these graphs have positive speed. We include a section of open problems and conjectures on the topics of stationary geometric random graphs and the hyperbolic Poisson Voronoi tessellation. [-]
We show that random walk on a stationary random graph with positive anchored expansion and exponential volume growth has positive speed. We also show that two families of random triangulations of the hyperbolic plane, the hyperbolic Poisson Voronoi tessellation and the hyperbolic Poisson Delaunay triangulation, have 1-skeletons with positive anchored expansion. As a consequence, we show that the simple random walks on these graphs have positive ...[+]

05C80 ; 60D05 ; 60G55

Sélection Signaler une erreur