En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Horbez, Camille 7 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Given a nontrivial conjugacy class $g$ in a free group $F_{N}$, what can we say about the typical growth of g under application of a random product of auto-morphisms of $F_{N}$? I will present a law of large numbers, a central limit theorem and a spectral theorem in this context. Similar results also hold for the growth of simple closed curves on a closed hyperbolic surface, under application of a random product of mapping classes of the surface. This is partly joint work with François Dahmani.[-]
Given a nontrivial conjugacy class $g$ in a free group $F_{N}$, what can we say about the typical growth of g under application of a random product of auto-morphisms of $F_{N}$? I will present a law of large numbers, a central limit theorem and a spectral theorem in this context. Similar results also hold for the growth of simple closed curves on a closed hyperbolic surface, under application of a random product of mapping classes of the ...[+]

20F65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Automorphisms of hyperbolic groups and growth - Horbez, Camille (Auteur de la Conférence) | CIRM H

Post-edited

Let $G$ be a torsion-free hyperbolic group, let $S$ be a finite generating set of $G$, and let $f$ be an automorphism of $G$. We want to understand the possible growth types for the word length of $f^n(g)$, where $g$ is an element of $G$. Growth was completely described by Thurston when $G$ is the fundamental group of a hyperbolic surface, and can be understood from Bestvina-Handel's work on train-tracks when $G$ is a free group. We address the general case of a torsion-free hyperbolic group $G$; we show that every element in $G$ has a well-defined exponential growth rate under iteration of $f$, and that only finitely many exponential growth rates arise as $g$ varies in $G$. In addition, we show the following dichotomy: every element of $G$ grows either exponentially fast or polynomially fast under iteration of $f$.
This is a joint work with Rémi Coulon, Arnaud Hilion and Gilbert Levitt.[-]
Let $G$ be a torsion-free hyperbolic group, let $S$ be a finite generating set of $G$, and let $f$ be an automorphism of $G$. We want to understand the possible growth types for the word length of $f^n(g)$, where $g$ is an element of $G$. Growth was completely described by Thurston when $G$ is the fundamental group of a hyperbolic surface, and can be understood from Bestvina-Handel's work on train-tracks when $G$ is a free group. We address the ...[+]

57M07 ; 20E06 ; 20F34 ; 20F65 ; 20E36 ; 20F67

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This mini-course is an introduction to growth problems in negatively curved groups with an emphasis on techniques borrowed from dynamical systems, in particular the study of geodesic flow on hyperbolic manifolds.

20F67 ; 20F65 ; 37A35 ; 37A15 ; 37D40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Embeddings between RAAGs (part 1) - Genevois, Anthony (Auteur de la Conférence) | CIRM H

Multi angle

Right-angled Artin groups, aka partially commutative groups, naturally define an interpolation between free groups and abelian free groups. The mini-course is dedicated to the question: given two right-angled Artin groups, how can we know whether one is isomorphic to a subgroup of the other? Even though this is a basic algebraic question, it remains widely open in full generality. Our goal will be to show how the combinatorial geometry of quasi-median graphs hilights some aspects of this problem. [-]
Right-angled Artin groups, aka partially commutative groups, naturally define an interpolation between free groups and abelian free groups. The mini-course is dedicated to the question: given two right-angled Artin groups, how can we know whether one is isomorphic to a subgroup of the other? Even though this is a basic algebraic question, it remains widely open in full generality. Our goal will be to show how the combinatorial geometry of ...[+]

20F65 ; 05C25 ; 20F67

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Measure equivalence and right-angled Artin groups - Horbez, Camille (Auteur de la Conférence) | CIRM H

Multi angle

Given a finite simple graph X, the right-angled Artin group associated to X is defined by the following very simple presentation: it has one generator per vertex of X, and the only relations consist in imposing that two generators corresponding to adjacent vertices commute. We investigate right-angled Artin groups from the point of view of measured group theory. Our main theorem is that two right-angled Artin groups with finite outer automorphism groups are measure equivalent if and only if they are isomorphic. On the other hand, right-angled Artin groups are never superrigid from this point of view: given any right-angled Artin group G, I will also describe two ways of producing groups that are measure equivalent to G but not commensurable to G.This is joint work with Jingyin Huang.[-]
Given a finite simple graph X, the right-angled Artin group associated to X is defined by the following very simple presentation: it has one generator per vertex of X, and the only relations consist in imposing that two generators corresponding to adjacent vertices commute. We investigate right-angled Artin groups from the point of view of measured group theory. Our main theorem is that two right-angled Artin groups with finite outer au...[+]

20F36 ; 20F65 ; 37A20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Self-similar actions on Cantor sets (part 1) - Skipper, Rachel (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This is an introductory survey course on antomorphisms of free groups and the spaces they act on.

20F65 ; 20F28 ; 57S05

Sélection Signaler une erreur