En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Structure learning for CTBN's

Bookmarks Report an error
Virtualconference
Authors : Miasojedow, Błażej (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The continuous time Bayesian networks (CTBNs) represent a class of stochastic processes, which can be used to model complex phenomena, for instance, they can describe interactions occurring in living processes, in social science models or in medicine. The literature on this topic is usually focused on the case, when the dependence structure of a system is known and we are to determine conditional transition intensities (parameters of the network). In the paper, we study the structure learning problem, which is a more challenging task and the existing research on this topic is limited. The approach, which we propose, is based on a penalized likelihood method. We prove that our algorithm, under mild regularity conditions, recognizes the dependence structure of the graph with high probability. We also investigate the properties of the procedure in numerical studies to demonstrate its effectiveness .

Keywords : Bayesian networks; continuous time Bayesian networks; continuous time Markov processes; Lasso penalty; model selection

MSC Codes :
60J27 - Continuous-time Markov processes on discrete state spaces
62F30 - Inference under constraints
62M05 - Markov processes: estimation

Additional resources :
https://www.cirm-math.fr/RepOrga/2146/Slides/Miasojedow.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 15/06/2020
    Conference Date : 05/06/2020
    Subseries : Research talks
    arXiv category : Machine Learning
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:42:35
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-06-05_Miasojedow.mp4

Information on the Event

Event Title : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2
Event Organizers : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne
Dates : 15/06/2020 - 19/06/2020
Event Year : 2020
Event URL : https://www.cirm-math.com/cirm-virtual-...

Citation Data

DOI : 10.24350/CIRM.V.19646103
Cite this video as: Miasojedow, Błażej (2020). Structure learning for CTBN's. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19646103
URI : http://dx.doi.org/10.24350/CIRM.V.19646103

See Also

Bibliography



Bookmarks Report an error