En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 33C45 7 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Functional equations and combinatorics - Di Vizio, Lucia (Auteur de la Conférence) | CIRM H

Multi angle

Starting from a presentation of the many recent applications of Galois theory of functional equations to enumerative combinatorics, we will introduce the Galois theory of (different kinds) of difference equations. We will focus on the point of view of the applications, hence with little emphasis on the technicalities of the domain, but I'm willing to do an hour of « exercises » (i.e. to go a little deeper into the proofs), if a part of the audience is interested.[-]
Starting from a presentation of the many recent applications of Galois theory of functional equations to enumerative combinatorics, we will introduce the Galois theory of (different kinds) of difference equations. We will focus on the point of view of the applications, hence with little emphasis on the technicalities of the domain, but I'm willing to do an hour of « exercises » (i.e. to go a little deeper into the proofs), if a part of the ...[+]

12H05 ; 05A15 ; 11B68 ; 05A40 ; 33B15 ; 33C45 ; 39A10 ; 30D30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss polynomials $P_{N}$ of degree $N$ that satisfy non-Hermitian orthogonality conditions with respect to the weight $\frac{\left ( z+1 \right )^{N}\left ( z+a \right )^{N}}{z^{2N}}$ on a contour in the complex plane going around 0. These polynomials reduce to Jacobi polynomials in case a = 1 and then their zeros cluster along an open arc on the unit circle as the degree tends to infinity.
For general a, the polynomials are analyzed by a Riemann-Hilbert problem. It follows that the zeros exhibit an interesting transition for the value of a = 1/9, when the open arc closes to form a closed curve with a density that vanishes quadratically. The transition is described by a Painlevé II transcendent.
The polynomials arise in a lozenge tiling problem of a hexagon with a periodic weighting. The transition in the behavior of zeros corresponds to a tacnode in the tiling problem.
This is joint work in progress with Christophe Charlier, Maurice Duits and Jonatan Lenells and we use ideas that were developed in [2] for matrix valued orthogonal polynomials in connection with a domino tiling problem for the Aztec diamond.[-]
I will discuss polynomials $P_{N}$ of degree $N$ that satisfy non-Hermitian orthogonality conditions with respect to the weight $\frac{\left ( z+1 \right )^{N}\left ( z+a \right )^{N}}{z^{2N}}$ on a contour in the complex plane going around 0. These polynomials reduce to Jacobi polynomials in case a = 1 and then their zeros cluster along an open arc on the unit circle as the degree tends to infinity.
For general a, the polynomials are analyzed ...[+]

05B45 ; 52C20 ; 33C45 ; 60B20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Gauss's Gaussian quadrature - Sanz-Serna, Jesús María (Auteur de la Conférence) | CIRM H

Multi angle

It is standard to present Gaussian quadrature in connection with orthogonal polynomials. However Gauss himself arrived at his quadrature rules by following a very different path. The talk will be a guided tour through Gauss's original memoir, a fascinating mathematical work that uses, in a masterly way, rational approximation, continued fractions, integral transforms, and many other resources. As any numerical analyst would do today, Gauss wraps up by presenting an experiment that shows the superiority of his approach when compared with other available techniques.[-]
It is standard to present Gaussian quadrature in connection with orthogonal polynomials. However Gauss himself arrived at his quadrature rules by following a very different path. The talk will be a guided tour through Gauss's original memoir, a fascinating mathematical work that uses, in a masterly way, rational approximation, continued fractions, integral transforms, and many other resources. As any numerical analyst would do today, Gauss wraps ...[+]

01-01 ; 65-01 ; 33C45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Le diamant aztèque - Cours 2 - Corteel, Sylvie (Auteur de la Conférence) | CIRM H

Multi angle

Le but du mini-cours sera de faire un cours introductif à différentes méthodes énumeratives à travers l'exemple des pavages par dominos du diamant aztèque. On essaiera de voir les fonctions (super)-symétriques, les moments de polynômes bi-orthogonaux, les évaluations de determinants, les algorithmes de génération...

05A15 ; 33C45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We establish a new connection between moments of n×n random matrices $X_{n}$ and hypergeometric orthogonal polynomials. Specifically, we consider moments $\mathbb{E}\mathrm{Tr} X_n^{-s}$ as a function of the complex variable $s\in\mathbb{C}$, whose analytic structure we describe completely. We discover several remarkable features, including a reflection symmetry (or functional equation), zeros on a critical line in the complex plane, and orthogonality relations. In each of the classical ensembles of random matrix theory (Gaussian, Laguerre, Jacobi) we characterise the moments in terms of the Askey scheme of hypergeometric orthogonal polynomials. We also calculate the leading order n→∞ asymptotics of the moments and discuss their symmetries and zeroes. We discuss aspects of these phenomena beyond the random matrix setting, including the Mellin transform of products and Wronskians of pairs of classical orthogonal polynomials. When the random matrix model has orthogonal or symplectic symmetry, we obtain a new duality formula relating their moments to hypergeometric orthogonal polynomials. This is work in collaboration with Fabio Cunden, Neil O' Connell and Nick Simm.[-]
We establish a new connection between moments of n×n random matrices $X_{n}$ and hypergeometric orthogonal polynomials. Specifically, we consider moments $\mathbb{E}\mathrm{Tr} X_n^{-s}$ as a function of the complex variable $s\in\mathbb{C}$, whose analytic structure we describe completely. We discover several remarkable features, including a reflection symmetry (or functional equation), zeros on a critical line in the complex plane, and ...[+]

15B52 ; 05E05 ; 33C45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Feynman Checkers: Number theory methods in quantum theory - Ustinov, Alexey (Auteur de la Conférence) ; Skopenkov, Mikhail (Auteur de la Conférence) | CIRM H

Virtualconference

In the 40s R. Feynman invented a simple model of electron motion, which is now known as Feynman's checkers. This model is also known as the one-dimensional quantum walk or the imaginary temperature Ising model. In Feynman's checkers, a checker moves on a checkerboard by simple rules, and the result describes the quantum-mechanical behavior of an electron.
We solve mathematically a problem by R. Feynman from 1965, which was to prove that the model reproduces the usual quantum-mechanical free-particle kernel for large time, small average velocity, and small lattice step. We compute the small-lattice-step and the large-time limits, justifying heuristic derivations by J. Narlikar from 1972 and by A.Ambainis et al. from 2001. The main tools are the Fourier transform and the stationary phase method.
A more detailed description of the model can be found in Skopenkov M.& Ustinov A. Feynman checkers: towards algorithmic quantum theory. (2020) https://arxiv.org/abs/2007.12879[-]
In the 40s R. Feynman invented a simple model of electron motion, which is now known as Feynman's checkers. This model is also known as the one-dimensional quantum walk or the imaginary temperature Ising model. In Feynman's checkers, a checker moves on a checkerboard by simple rules, and the result describes the quantum-mechanical behavior of an electron.
We solve mathematically a problem by R. Feynman from 1965, which was to prove that the ...[+]

82B20 ; 11L03 ; 68Q12 ; 81P68 ; 81T25 ; 81T40 ; 05A17 ; 11P82 ; 33C45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Le diamant aztèque - Cours 1 - Corteel, Sylvie (Auteur de la Conférence) | CIRM H

Multi angle

Le but du mini-cours sera de faire un cours introductif à différentes méthodes énumeratives à travers l'exemple des pavages par dominos du diamant aztèque. On essaiera de voir les fonctions (super)-symétriques, les moments de polynômes bi-orthogonaux, les évaluations de determinants, les algorithmes de génération...

05A15 ; 33C45

Sélection Signaler une erreur