En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 60J05 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this paper we study asymptotic properties of random forests within the framework of nonlinear time series modeling. While random forests have been successfully applied in various fields, the theoretical justification has not been considered for their use in a time series setting. Under mild conditions, we prove a uniform concentration inequality for regression trees built on nonlinear autoregressive processes and, subsequently, use this result to prove consistency for a large class of random forests. The results are supported by various simulations. (This is joint work with Mikkel Slot Nielsen.)[-]
In this paper we study asymptotic properties of random forests within the framework of nonlinear time series modeling. While random forests have been successfully applied in various fields, the theoretical justification has not been considered for their use in a time series setting. Under mild conditions, we prove a uniform concentration inequality for regression trees built on nonlinear autoregressive processes and, subsequently, use this ...[+]

62G10 ; 60G10 ; 60J05 ; 62M05 ; 62M10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, I will present mixing properties for a broad class of Poisson count time series satisfying a certain contraction condition. Using specific coupling techniques, we obtain absolute regularity at a geometric rate not only for stationary Poisson-GARCH processes but also for models with an explosive trend. Easily verifiable sufficient conditions for absolute regularity can be deduced from our general results for a variety of models including classical (log-)linear models.[-]
In this talk, I will present mixing properties for a broad class of Poisson count time series satisfying a certain contraction condition. Using specific coupling techniques, we obtain absolute regularity at a geometric rate not only for stationary Poisson-GARCH processes but also for models with an explosive trend. Easily verifiable sufficient conditions for absolute regularity can be deduced from our general results for a variety of models ...[+]

60G07 ; 60G10 ; 60J05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We are interested in monitoring patients in remission from cancer. Our aim is to detect their relapses as soon as possible, as well as detect the type of relapse, to decide on the appropriate treatment to be given. Available data are some marker level of the rate of cancerous cells in the blood which evolves continuously but is measured at discrete (large) intervals and through noise. The patient's state of health is modeled by a piecewise deterministic Markov process (PDMP). Several decisions must be taken from these incomplete observations: what treatment to give, and when to schedule the next medical visit. After presenting a suitable class of controlled PDMPs to model this situation, I will describe the corresponding stochastic control problem and will present the resolution strategy that we adopted. The objective is to obtain an approximation of the value function (optimal performance) as well as build an explicit policy applicable in practice and as close to optimality as possible. The results will be illustrated by simulations calibrated on a cohort of a clinical trial on multiple myeloma provided by the Center of Cancer Research in Toulouse.[-]
We are interested in monitoring patients in remission from cancer. Our aim is to detect their relapses as soon as possible, as well as detect the type of relapse, to decide on the appropriate treatment to be given. Available data are some marker level of the rate of cancerous cells in the blood which evolves continuously but is measured at discrete (large) intervals and through noise. The patient's state of health is modeled by a piecewise ...[+]

60J25 ; 93E20 ; 60J05 ; 93E11

Sélection Signaler une erreur