Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Positivity of the tangent bundle and its top exterior power (namely, the anticanonical bundle) is the subject of extensive literature, and several open problems. Notably, Campana and Peternell predict that if $-K_{X}$ is strictly nef, then $X$ is a Fano variety: this conjecture is proven up to dimension 3 by the work of Maeda and Serrano. In this talk, we investigate positivity of the intermediate exterior powers of the tangent bundle. We prove that if $X$ is a smooth projective n-fold and the third, fourth or (n-1)-th exterior power of $T_{X}$ is strictly nef, then $X$ is a Fano variety. Moreover, we classify smooth projective varieties of Picard number at least two with third or fourth exterior power of $T_{X}$ strictly nef. This work is actually slightly more general, as it boils down to classifying rationally connected varieties such that the degree of the anticanonical bundle on rational curves is quite large.
[-]
Positivity of the tangent bundle and its top exterior power (namely, the anticanonical bundle) is the subject of extensive literature, and several open problems. Notably, Campana and Peternell predict that if $-K_{X}$ is strictly nef, then $X$ is a Fano variety: this conjecture is proven up to dimension 3 by the work of Maeda and Serrano. In this talk, we investigate positivity of the intermediate exterior powers of the tangent bundle. We prove ...
[+]
14J45 ; 14J40 ; 32Q10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Viehweg and Zuo obtained several results concerning the moduli number in smooth families of polarized varieties with semi-ample canonical class over a quasiprojective base. These results led Viehweg to conjecture that the base of a family of maximal variation is of log-general type, and the conjecture has been recently proved by Campana and Paun.
From the “opposite” side, Taji proved that a smooth projective family over a special (in the sense of Campana) quasiprojective base is isotrivial.
We extend Taji's theorem to quasismooth families, that is, families of leaves of compact foliations without singularities. This is a joint work with F. Campana
[-]
Viehweg and Zuo obtained several results concerning the moduli number in smooth families of polarized varieties with semi-ample canonical class over a quasiprojective base. These results led Viehweg to conjecture that the base of a family of maximal variation is of log-general type, and the conjecture has been recently proved by Campana and Paun.
From the “opposite” side, Taji proved that a smooth projective family over a special (in the sense ...
[+]
32Q10 ; 14D22 ; 14J10 ; 14Dxx ; 14Exx ; 32J27 ; 32S65
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Wang et Zhu ont caractérisé l'existence de métriques de Kähler-Einstein sur les variétés toriques Fano en termes du barycentre du polytope associé. L'objectif de cet exposé est de présenter un résultat similaire pour les compactifications $G \times G$-équivariantes Fano d'un groupe réductif $G$. Je présenterai le polytope moment associé à une telle variété et comment le barycentre de ce polytope par rapport à la mesure de Duistermaat-Heckman est lié à l'existence de métriques de Kähler-Einstein. La condition nécessaire et suffisante d'existence de métriques de Kähler-Einstein ainsi obtenue est vérifiable en pratique et donne de nouveaux exemples de variétés de Kähler-Einstein Fano (par exemple la compactification magnifique du groupe semisimple adjoint PSL$(3, \mathbb{C})$).
[-]
Wang et Zhu ont caractérisé l'existence de métriques de Kähler-Einstein sur les variétés toriques Fano en termes du barycentre du polytope associé. L'objectif de cet exposé est de présenter un résultat similaire pour les compactifications $G \times G$-équivariantes Fano d'un groupe réductif $G$. Je présenterai le polytope moment associé à une telle variété et comment le barycentre de ce polytope par rapport à la mesure de Duistermaat-Heckman est ...
[+]
32Q20 ; 14J45 ; 53C55 ; 32Q10 ; 14M27