Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Earth's atmosphere hosts a rich spectrum of phenomena that involve interactions of a variety of processes across many length and time scales. A systematic approach to analyzing these scale dependent processes is a core task of theoretical meteorology and a prerequi- site to constructing reliable computational models for weather forecasting and climate simulation.
Lecture I The fundamental tools of similarity theory and formal single scale asymptotics will allow us to systematize the large zoo of scale-dependent model equations that one finds in modern textbooks of theoretical meteorology.
Lecture II The meteorological analogue of the incompressible flow equations are the ”anelastic” and ”pseudo-incompressible” models. Here we will learn how the presence of internal gravity waves in the atmosphere implies an asymptotic three-scale problem that renders the formal derivation and justification of these models much more intricate than the classical low Mach number derivation of the incompressible flow equations.
Lecture III The mechanisms by which tropical storms develop into hurricanes and typhoons are still under intense debate despite decades of research. A recent theory for the dynamics of strongly tilted atmospheric vortices will show how asymptotic methods help structuring this scientific debate, and how they offer new angles of scientific attack on the problem.
Lecture * If time permits, I will also summarize some ramifications of the scaling regimes and scaling theories considered in Lectures I-III on the construction of reliable computational methods.
[-]
Earth's atmosphere hosts a rich spectrum of phenomena that involve interactions of a variety of processes across many length and time scales. A systematic approach to analyzing these scale dependent processes is a core task of theoretical meteorology and a prerequi- site to constructing reliable computational models for weather forecasting and climate simulation.
Lecture I The fundamental tools of similarity theory and formal single scale ...
[+]
35Q86 ; 35Qxx ; 86A35
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Earth's atmosphere hosts a rich spectrum of phenomena that involve interactions of a variety of processes across many length and time scales. A systematic approach to analyzing these scale dependent processes is a core task of theoretical meteorology and a prerequi- site to constructing reliable computational models for weather forecasting and climate simulation.
Lecture I The fundamental tools of similarity theory and formal single scale asymptotics will allow us to systematize the large zoo of scale-dependent model equations that one finds in modern textbooks of theoretical meteorology.
Lecture II The meteorological analogue of the incompressible flow equations are the ”anelastic” and ”pseudo-incompressible” models. Here we will learn how the presence of internal gravity waves in the atmosphere implies an asymptotic three-scale problem that renders the formal derivation and justification of these models much more intricate than the classical low Mach number derivation of the incompressible flow equations.
Lecture III The mechanisms by which tropical storms develop into hurricanes and typhoons are still under intense debate despite decades of research. A recent theory for the dynamics of strongly tilted atmospheric vortices will show how asymptotic methods help structuring this scientific debate, and how they offer new angles of scientific attack on the problem.
Lecture * If time permits, I will also summarize some ramifications of the scaling regimes and scaling theories considered in Lectures I-III on the construction of reliable computational methods.
[-]
Earth's atmosphere hosts a rich spectrum of phenomena that involve interactions of a variety of processes across many length and time scales. A systematic approach to analyzing these scale dependent processes is a core task of theoretical meteorology and a prerequi- site to constructing reliable computational models for weather forecasting and climate simulation.
Lecture I The fundamental tools of similarity theory and formal single scale ...
[+]
35Q86 ; 35Qxx ; 86A35
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The purpose of these lectures is to present general methods to construct boundary layers both in linear and nonlinear contexts. We will explain how the boundary layer sizes and profiles can be predicted in linear cases, together with some decay estimates. We will illustrate this method with several explicit examples: Ekman layers, reflection of internal waves in a stratified fluid. . . We will also tackle semilinear problems, adding for instance a convection term to the previous examples. Eventually, we will introduce some tools for the study of the Prandtl equation.
[-]
The purpose of these lectures is to present general methods to construct boundary layers both in linear and nonlinear contexts. We will explain how the boundary layer sizes and profiles can be predicted in linear cases, together with some decay estimates. We will illustrate this method with several explicit examples: Ekman layers, reflection of internal waves in a stratified fluid. . . We will also tackle semilinear problems, adding for instance ...
[+]
35Q35 ; 35Q86 ; 76D10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.