En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35Q86 24 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Nearshore hydrodynamics - Lecture 1 - Bonneton, Philippe (Author of the conference) | CIRM H

Multi angle

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Modelling shallow water waves - Lecture 3 - Lannes, David (Author of the conference) | CIRM H

Multi angle

A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical challenges that one still has to understand in order to describe correctly and efficiently such complex phenomena as wave breaking, overtopping, wave-structures interactions, etc.

I Derivation of several shallow water models

We will show how to derive several shallow water models (nonlinear shallow water equations, Boussinesq and Serre-Green-Naghdi systems) from the free surface Euler equations. We will consider first the case of an idealized configuration where no breaking waves are involved, where the water height does not vanish (no beach!), and where the flow is irrotational – this is the only configuration for which a rigorous justification of the asymptotic models can be justified.

II Brief analysis of these models.

We will briefly comment the mathematical structure of these equations, with a particular focus on the properties that are of interest for their numerical implementation. We will also discuss how these models behave in when the water height vanishes, since they are typically used in such configurations (see the lecture by P. Bonneton).

III Vorticity and turbulent effects.

We will propose a generalization of the derivation of the main shallow water models in the presence of vorticity, and show that the standard irrotational shallow water models must be coupled with an equation for a ”turbulent” tensor. We will also make the link with a modelling of wave breaking proposed by Gavrilyuk and Richard in which wave breaking is taken into account as a source term in this additional equation.

IV Floating objects.

This last section will be devoted to the description of a new approach to describe the interaction of waves in shallow water with floating objects, which leads to several interesting mathematical and numerical issues.[-]
A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical ...[+]

35Q86 ; 86A05 ; 35-XX

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, I will present the global solvability of the primitive equations for the atmosphere coupled to moisture dynamics with phase changes for warm clouds, where water is present in the form of water vapor and in the liquid state as cloud water and rain water. This moisture model, which has been used by Klein–Majda in [1] and corresponds to a basic form of the bulk microphysics closure in the spirit of Kessler [2] and Grabowski–Smolarkiewicz [3], contains closures for the phase changes condensation and evaporation, as well as the processes of autoconversion of cloud water into rainwater and the collection of cloud water by the falling rain droplets. The moisture balances are strongly coupled to the thermodynamic equation via the latent heat associated to the phase changes. The global well-posedness was proved by combining the technique used in Hittmeir–Klein–Li–Titi [4], where global well-posedness was established for the pure moisture system for given velocity, and the ideas of Cao–Titi [5], who succeeded in proving the global solvability of the primitive equations without coupling to the moisture.[-]
In this talk, I will present the global solvability of the primitive equations for the atmosphere coupled to moisture dynamics with phase changes for warm clouds, where water is present in the form of water vapor and in the liquid state as cloud water and rain water. This moisture model, which has been used by Klein–Majda in [1] and corresponds to a basic form of the bulk microphysics closure in the spirit of Kessler [2] and Grabowski–S...[+]

35A01 ; 35B45 ; 35D35 ; 35M86 ; 35Q30 ; 35Q35 ; 35Q86 ; 76D03 ; 76D09

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The purpose of these lectures is to present general methods to construct boundary layers both in linear and nonlinear contexts. We will explain how the boundary layer sizes and profiles can be predicted in linear cases, together with some decay estimates. We will illustrate this method with several explicit examples: Ekman layers, reflection of internal waves in a stratified fluid. . . We will also tackle semilinear problems, adding for instance a convection term to the previous examples. Eventually, we will introduce some tools for the study of the Prandtl equation.[-]
The purpose of these lectures is to present general methods to construct boundary layers both in linear and nonlinear contexts. We will explain how the boundary layer sizes and profiles can be predicted in linear cases, together with some decay estimates. We will illustrate this method with several explicit examples: Ekman layers, reflection of internal waves in a stratified fluid. . . We will also tackle semilinear problems, adding for instance ...[+]

35Q35 ; 35Q86 ; 76D10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Nearshore hydrodynamics - Lecture 2 - Bonneton, Philippe (Author of the conference) | CIRM H

Multi angle

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Nearshore hydrodynamics - Lecture 3 - Bonneton, Philippe (Author of the conference) | CIRM H

Multi angle

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error