En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents von Sachs, Rainer 6 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk we address generalisation of stationary Hawkes processes in order to allow for a time-evolutive second-order analysis. A formal derivation of a time-frequency analysis via a time-varying Bartlett spectrum is given by introduction of the new class of locally stationary Hawkes process. This model is most appropriate for the analysis of (potentially very) long stretches of observed self-exciting point processes, as introduced in the stationary case by A. Hawkes (1971), in one dimension (temporal) or in a higher dimensional (i.e. spatial) context. Motivated by the concept of locally stationary autoregressive processes, we apply however inherently different techniques to describe and capture the time-varying dynamics of self-exciting point processes in the frequency domain. In particular we derive a stationary approximation of the Laplace transform of a locally stationary Hawkes process. This allows us to define a local intensity function and a local Bartlett spectrum which can be used to compute approximations of first and second order moments of the process. We will also present some insightful simulation studies and propose and discuss preliminary asymptotic results on how to estimate the first and second order structure of the process. Joint work with François Roueff and Laure Sansonnet

Keywords: locally stationary processes; Hawkes processes; Bartlett spectrum; time frequency analysis; point processes[-]
In this talk we address generalisation of stationary Hawkes processes in order to allow for a time-evolutive second-order analysis. A formal derivation of a time-frequency analysis via a time-varying Bartlett spectrum is given by introduction of the new class of locally stationary Hawkes process. This model is most appropriate for the analysis of (potentially very) long stretches of observed self-exciting point processes, as introduced in the ...[+]

46N30 ; 60G55 ; 62M15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Anomaly detection in random fields is an important problem in many applications including the detection of cancerous cells in medicine, obstacles in autonomous driving and cracks in the construction material of buildings. Scan statistics have the potential to detect local structure in such data sets by enhancing relevant features. Frequently, such anomalies are visible as areas with different expected values compared to the background noise where the geometric properties of these areas may depend on the type of anomaly. Such geometric properties can be taken into account by combinations and contrasts of sample means over differently-shaped local windows. For example, in 2D image data of concrete both cracks, which we aim to detect, as well as integral parts of the material (such as air bubbles or gravel) constitute areas with different expected values in the image. Nevertheless, due to their different geometric properties we can define scan statistics that enhance cracks and at the same time discard the integral parts of the given concrete. Cracks can then be detected using asuitable threshold for appropriate scan statistics. 9 In order to derive such thresholds, we prove weak convergence of the scan statistics towards a functional of a Gaussian process under the null hypothesis of no anomalies. The result allows for arbitrary (but fixed) dimension, makes relatively weak assumptions on the underlying noise, the shape of the local windows and the combination of finitely-many of such windows. These theoretical findings are accompanied by some simulations as well as applications to semi-artifical 2D-images of concrete.[-]
Anomaly detection in random fields is an important problem in many applications including the detection of cancerous cells in medicine, obstacles in autonomous driving and cracks in the construction material of buildings. Scan statistics have the potential to detect local structure in such data sets by enhancing relevant features. Frequently, such anomalies are visible as areas with different expected values compared to the background noise ...[+]

62M40 ; 62P30 ; 60G60

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, I will present mixing properties for a broad class of Poisson count time series satisfying a certain contraction condition. Using specific coupling techniques, we obtain absolute regularity at a geometric rate not only for stationary Poisson-GARCH processes but also for models with an explosive trend. Easily verifiable sufficient conditions for absolute regularity can be deduced from our general results for a variety of models including classical (log-)linear models.[-]
In this talk, I will present mixing properties for a broad class of Poisson count time series satisfying a certain contraction condition. Using specific coupling techniques, we obtain absolute regularity at a geometric rate not only for stationary Poisson-GARCH processes but also for models with an explosive trend. Easily verifiable sufficient conditions for absolute regularity can be deduced from our general results for a variety of models ...[+]

60G07 ; 60G10 ; 60J05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Multivariate extreme value distributions are a common choice for modelling multivariate extremes. In high dimensions, however, the construction of flexible and parsimonious models is challenging. We propose to combine bivariate extreme value distributions into a Markov random field with respect to a tree. Although in general not an extreme value distribution itself, this Markov tree is attracted by a multivariate extreme value distribution. The latter serves as a tree-based approximation to an unknown extreme value distribution with the given bivariate distributions as margins. Given data, we learn an appropriate tree structure by Prim's algorithm with estimated pairwise upper tail dependence coefficients or Kendall's tau values as edge weights. The distributions of pairs of connected variables can be fitted in various ways. The resulting tree-structured extreme value distribution allows for inference on rare event probabilities, as illustrated on river discharge data from the upper Danube basin.[-]
Multivariate extreme value distributions are a common choice for modelling multivariate extremes. In high dimensions, however, the construction of flexible and parsimonious models is challenging. We propose to combine bivariate extreme value distributions into a Markov random field with respect to a tree. Although in general not an extreme value distribution itself, this Markov tree is attracted by a multivariate extreme value distribution. The ...[+]

62G32 ; 62G30 ; 62H22

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Conditional independence in extremes - Strokorb, Kirstin (Author of the conference) | CIRM H

Multi angle

Statistical modelling of complex dependencies in extreme events requires meaningful sparsity structures in multivariate extremes. In this context two perspectives on conditional independence and graphical models have recently emerged: One that focuses on threshold exceedances and multivariate pareto distributions, and another that focuses on max-linear models and directed acyclic graphs. What connects these notions is the exponent measure that lies at the heart of each approach. In this work we develop a notion of conditional independence defined directly on the exponent measure (and even more generally on measures that explode at the origin) that extends recent work of Engelke and Hitz (2019), who had been confined to homogeneous measures with density. We prove easier checkable equivalent conditions to verify this new conditional independence in terms of a reduction to simple test classes, probability kernels and density factorizations. This provides a pathsway to graphical modelling among general multivariate (max-)infinitely distributions. Structural max-linear models turn out to form a Bayesian network with respect to our new form of conditional independence.[-]
Statistical modelling of complex dependencies in extreme events requires meaningful sparsity structures in multivariate extremes. In this context two perspectives on conditional independence and graphical models have recently emerged: One that focuses on threshold exceedances and multivariate pareto distributions, and another that focuses on max-linear models and directed acyclic graphs. What connects these notions is the exponent measure that ...[+]

62H22 ; 60G70 ; 60G51

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The extrapolation of correlation - Panaretos, Victor (Author of the conference) | CIRM H

Multi angle

We discuss the problem of positive-semidefinite extension: extending a partially specified covariance kernel from a subdomain Ω of a rectangular domain I x I to a covariance kernel on the entire domain I x I. For a broad class of domains Ω called serrated domains, we present a complete theory. Namely, we demonstrate that a canonical completion always exists and can be explicitly constructed. We characterise all possible completions as suitable perturbations of the canonical completion, and determine necessary and sufficient conditions for a unique completion to exist. We interpret the canonical completion via the graphical model structure it induces on the associated Gaussian process. Furthermore, we show how the determination of the canonical completion reduces to the solution of a system of linear inverse problems in the space of Hilbert-Schmidt operators, and derive rates of convergence when the kernel is to be empirically estimated. We conclude by providing extensions of our theory to more general forms of domains, and by demonstrating how our results can be used in statistical inverse problems associated with stochastic processes.[-]
We discuss the problem of positive-semidefinite extension: extending a partially specified covariance kernel from a subdomain Ω of a rectangular domain I x I to a covariance kernel on the entire domain I x I. For a broad class of domains Ω called serrated domains, we present a complete theory. Namely, we demonstrate that a canonical completion always exists and can be explicitly constructed. We characterise all possible completions as suitable ...[+]

62M20 ; 62H22 ; 62G05 ; 47A57 ; 45Q05

Bookmarks Report an error