En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Basor, Estelle 25 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures will focus on understanding properties of classical operators and their connections to other important areas of mathematics. Perhaps the simplest example is the asymptotics of determinants of finite Toepltiz matrices, which have constants along the diagonals. The determinants of these $n$ by $n$ size matrices, have (in appropriate cases) an asymptotic expression that is of the form $G^n \times E$ where both G and E are constants. This expansion is useful in describing many statistical quantities variables for certain random matrix models.

In other instances, where the above expression must be modified, the asymptotics correspond to critical temperature cases in the Ising Model, or to cases where the random variables are in some sense singular.

Generalizations of the above result to other settings, for example, convolution operators on the line, are also important. For example, for Wiener-Hopf operators, the analogue of the determinants of finite matrices is a Fredholm determinant. These determinants are especially prominent in random matrix theory where they describe many quantities including the distribution of the largest eigenvalue in the classic Gaussian Unitary Ensemble, and in turn connections to Painleve equations.

The lectures will use operator theory methods to first describe the simplest cases of the asymptotics of determinants for the convolution (both discrete and continuous) operators, then proceed to the more singular cases. Operator theory techniques will also be used to illustrate the links to the Painlevé equations.[-]
These lectures will focus on understanding properties of classical operators and their connections to other important areas of mathematics. Perhaps the simplest example is the asymptotics of determinants of finite Toepltiz matrices, which have constants along the diagonals. The determinants of these $n$ by $n$ size matrices, have (in appropriate cases) an asymptotic expression that is of the form $G^n \times E$ where both G and E are constants. ...[+]

47B35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures will focus on understanding properties of classical operators and their connections to other important areas of mathematics. Perhaps the simplest example is the asymptotics of determinants of finite Toepltiz matrices, which have constants along the diagonals. The determinants of these $n$ by $n$ size matrices, have (in appropriate cases) an asymptotic expression that is of the form $G^n \times E$ where both G and E are constants. This expansion is useful in describing many statistical quantities variables for certain random matrix models.

In other instances, where the above expression must be modified, the asymptotics correspond to critical temperature cases in the Ising Model, or to cases where the random variables are in some sense singular.

Generalizations of the above result to other settings, for example, convolution operators on the line, are also important. For example, for Wiener-Hopf operators, the analogue of the determinants of finite matrices is a Fredholm determinant. These determinants are especially prominent in random matrix theory where they describe many quantities including the distribution of the largest eigenvalue in the classic Gaussian Unitary Ensemble, and in turn connections to Painleve equations.

The lectures will use operator theory methods to first describe the simplest cases of the asymptotics of determinants for the convolution (both discrete and continuous) operators, then proceed to the more singular cases. Operator theory techniques will also be used to illustrate the links to the Painlevé equations.[-]
These lectures will focus on understanding properties of classical operators and their connections to other important areas of mathematics. Perhaps the simplest example is the asymptotics of determinants of finite Toepltiz matrices, which have constants along the diagonals. The determinants of these $n$ by $n$ size matrices, have (in appropriate cases) an asymptotic expression that is of the form $G^n \times E$ where both G and E are constants. ...[+]

47B35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures will focus on understanding properties of classical operators and their connections to other important areas of mathematics. Perhaps the simplest example is the asymptotics of determinants of finite Toepltiz matrices, which have constants along the diagonals. The determinants of these $n$ by $n$ size matrices, have (in appropriate cases) an asymptotic expression that is of the form $G^n \times E$ where both G and E are constants. This expansion is useful in describing many statistical quantities variables for certain random matrix models.

In other instances, where the above expression must be modified, the asymptotics correspond to critical temperature cases in the Ising Model, or to cases where the random variables are in some sense singular.

Generalizations of the above result to other settings, for example, convolution operators on the line, are also important. For example, for Wiener-Hopf operators, the analogue of the determinants of finite matrices is a Fredholm determinant. These determinants are especially prominent in random matrix theory where they describe many quantities including the distribution of the largest eigenvalue in the classic Gaussian Unitary Ensemble, and in turn connections to Painleve equations.

The lectures will use operator theory methods to first describe the simplest cases of the asymptotics of determinants for the convolution (both discrete and continuous) operators, then proceed to the more singular cases. Operator theory techniques will also be used to illustrate the links to the Painlevé equations.[-]
These lectures will focus on understanding properties of classical operators and their connections to other important areas of mathematics. Perhaps the simplest example is the asymptotics of determinants of finite Toepltiz matrices, which have constants along the diagonals. The determinants of these $n$ by $n$ size matrices, have (in appropriate cases) an asymptotic expression that is of the form $G^n \times E$ where both G and E are constants. ...[+]

47B35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Zeros, moments and determinants - Snaith, Nina (Auteur de la conférence) | CIRM H

Multi angle

For 20 years we have known that average values of characteristic polynomials of random unitary matrices provide a good model for moments of the Riemann zeta function. Now we consider mixed moments of characteristic polynomials and their derivatives, calculations which are motivated by questions on the distribution of zeros of the derivative of the Riemann zeta function.

15B52 ; 11M26 ; 11M06

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study the expectation of the matrix of overlaps of left and right eigenvectors in the complex Ginibre ensemble, conditioned on a fixed number of k complex eigenvalues.
The diagonal (k=1) and off-diagonal overlap (k=2) were introduced by Chalker and Mehlig. They provided exact expressions for finite matrix size N, in terms of a large determinant of size proportional to N. In the large-N limit these overlaps were determined on the global scale and heuristic arguments for the local scaling at the origin were given. The topic has seen a rapid development in the recent past. Our contribution is to derive exact determinantal expressions of size k x k in terms of a kernel, valid for finite N and arbitrary k.
It can be expressed as an operator acting on the complex eigenvalue correlation functions and allows us to determine all local correlations in the bulk close to the origin, and at the spectral edge. The methods we use are bi-orthogonal polynomials in the complex plane and the analyticity of the diagonal overlap for general k.
This is joint work with Roger Tribe, Athanasios Tsareas, and Oleg Zaboronski as appeared in arXiv:1903.09016 [math-ph][-]
We study the expectation of the matrix of overlaps of left and right eigenvectors in the complex Ginibre ensemble, conditioned on a fixed number of k complex eigenvalues.
The diagonal (k=1) and off-diagonal overlap (k=2) were introduced by Chalker and Mehlig. They provided exact expressions for finite matrix size N, in terms of a large determinant of size proportional to N. In the large-N limit these overlaps were determined on the global scale ...[+]

60B20 ; 60G55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
For the commonly studied Hermitian random matrix models there exist tridiagonal matrix models with the same eigenvalue distribution and the same spectral measure $v_{n}$ at the vector $e_{1}$. These tridiagonal matrices give recurrence coefficients that can be used to build the family of random polynomials that are orthogonal with respect to νn. A similar bijection between spectral data and recurrence coefficients also holds for the Unitary ensembles. This time in stead of obtaining a tridiagonal matrix you obtain a sequence $\left \{ \alpha _{k} \right \}_{k=0}^{n-1}$ Szegö coefficients. The random orthogonal polynomials that are generated by this process may then be used to study properties of the original eigenvalue process.
These techniques may be used not just in the classical cases, but also in the more general case of $\beta $-ensembles. I will discuss various ways that orthogonal polynomials techniques may be applied including to show convergence of the Circular $\beta $-ensemble to $Sine_{\beta }$. I will finish by discussing a result on the maximum deviation of the counting function of Sineβ from it expected value. This is related to studying the phases of associated random orthogonal polynomials.[-]
For the commonly studied Hermitian random matrix models there exist tridiagonal matrix models with the same eigenvalue distribution and the same spectral measure $v_{n}$ at the vector $e_{1}$. These tridiagonal matrices give recurrence coefficients that can be used to build the family of random polynomials that are orthogonal with respect to νn. A similar bijection between spectral data and recurrence coefficients also holds for the Unitary ...[+]

60B20 ; 15B52

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Monodromy dependence of Painlevé tau functions - Lisovyi, Oleg (Auteur de la conférence) | CIRM H

Multi angle

In many interesting cases, distribution functions of random matrix theory and correlation functions of integrable models of statistical mechanics and quantum field theory are given by tau functions of Painlevé equations. I will discuss an extension of the Jimbo-Miwa-Ueno differential to the space of monodromy data and explain how this construction can be used to compute constant terms in the tau function asymptotics.

34M35 ; 34M55 ; 34E10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Integrable systems and spectral curves - Eynard, Bertrand (Auteur de la conférence) | CIRM H

Multi angle

Usually one defines a Tau function Tau(t_1,t_2,...) as a function of a family of times having to obey some equations, like Miwa-Jimbo equations, or Hirota equations.
Here we shall view times as local coordinates in the moduli-space of spectral curves, and define the Tau-function of a spectral curve Tau(S), in an intrinsic way, independent of a choice of coordinates. Deformations are tangent vectors, and the tangent space is isomorphic to the space of cycles (cf Goldman bracket), so that Hamiltonians can be represented by cycles.
All the integrable system formalism can then be represented geometrically in the space of cycles: the Poisson bracket is the intersection, the conserved quantities are periods, Miwa-Jimbo equations and Seiberg-Witten equations are a mere consequence of the definition, Hirota equation is a vanishing monodromy condition, and Virasoro-W constraint are automatically satisfied by our definition, showing that our Tau-function is also a conformal block. Our definition contains KdV, KP multicomponent KP, Hitchin systems, and probably all known classical integrable systems.[-]
Usually one defines a Tau function Tau(t_1,t_2,...) as a function of a family of times having to obey some equations, like Miwa-Jimbo equations, or Hirota equations.
Here we shall view times as local coordinates in the moduli-space of spectral curves, and define the Tau-function of a spectral curve Tau(S), in an intrinsic way, independent of a choice of coordinates. Deformations are tangent vectors, and the tangent space is isomorphic to the ...[+]

60B20 ; 37K20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Universality in tiling models - Van Moerbeke, Pierre (Auteur de la conférence) | CIRM H

Multi angle

We consider the domino tilings of a large class of Aztec rectangles. For an appropriate scaling limit, we show that, the disordered region consists of roughly two arctic circles connected with a finite number of paths. The statistics of these paths is governed by a kernel, also found in other models (universality). The kernel thus obtained is believed to be a master kernel, from which the kernels, associated with critical points, can all be derived.[-]
We consider the domino tilings of a large class of Aztec rectangles. For an appropriate scaling limit, we show that, the disordered region consists of roughly two arctic circles connected with a finite number of paths. The statistics of these paths is governed by a kernel, also found in other models (universality). The kernel thus obtained is believed to be a master kernel, from which the kernels, associated with critical points, can all be ...[+]

60B20 ; 60D05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The determinantal point processes arise naturally from different areas such as random matrices, representation theory, random graphs and zeros of holomorphic functions etc. In this talk, we will briefly talk about determinantal point processes related to spaces of holomorphic functions, in particular, we will discuss some results concerning the conditional measures, rigidity property and the Olshanskis problem on this area. The talk will be based on several works joint with Alexander Bufetov, Alexander Shamov and Shilei Fan.[-]
The determinantal point processes arise naturally from different areas such as random matrices, representation theory, random graphs and zeros of holomorphic functions etc. In this talk, we will briefly talk about determinantal point processes related to spaces of holomorphic functions, in particular, we will discuss some results concerning the conditional measures, rigidity property and the Olshanskis problem on this area. The talk will be ...[+]

60G55

Sélection Signaler une erreur