En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14D20 12 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
This lecture series will be an introduction to stability conditions on derived categories, wall-crossing, and its applications to birational geometry of moduli spaces of sheaves. I will assume a passing familiarity with derived categories.

- Introduction to stability conditions. I will start with a gentle review of aspects of derived categories. Then an informal introduction to Bridgeland's notion of stability conditions on derived categories [2, 5, 6]. I will then proceed to explain the concept of wall-crossing, both in theory, and in examples [1, 2, 4, 6].

- Wall-crossing and birational geometry. Every moduli space of Bridgeland-stable objects comes equipped with a canonically defined nef line bundle. This systematically explains the connection between wall-crossing and birational geometry of moduli spaces. I will explain and illustrate the underlying construction [7].

- Applications : Moduli spaces of sheaves on $K3$ surfaces. I will explain how one can use the theory explained in the previous talk in order to systematically study the birational geometry of moduli spaces of sheaves, focussing on $K3$ surfaces [1, 8].[-]
This lecture series will be an introduction to stability conditions on derived categories, wall-crossing, and its applications to birational geometry of moduli spaces of sheaves. I will assume a passing familiarity with derived categories.

- Introduction to stability conditions. I will start with a gentle review of aspects of derived categories. Then an informal introduction to Bridgeland's notion of stability conditions on derived categories ...[+]

14D20 ; 14E30 ; 14J28 ; 18E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This lecture series will be an introduction to stability conditions on derived categories, wall-crossing, and its applications to birational geometry of moduli spaces of sheaves. I will assume a passing familiarity with derived categories.

- Introduction to stability conditions. I will start with a gentle review of aspects of derived categories. Then an informal introduction to Bridgeland's notion of stability conditions on derived categories [2, 5, 6]. I will then proceed to explain the concept of wall-crossing, both in theory, and in examples [1, 2, 4, 6].

- Wall-crossing and birational geometry. Every moduli space of Bridgeland-stable objects comes equipped with a canonically defined nef line bundle. This systematically explains the connection between wall-crossing and birational geometry of moduli spaces. I will explain and illustrate the underlying construction [7].

- Applications : Moduli spaces of sheaves on $K3$ surfaces. I will explain how one can use the theory explained in the previous talk in order to systematically study the birational geometry of moduli spaces of sheaves, focussing on $K3$ surfaces [1, 8].[-]
This lecture series will be an introduction to stability conditions on derived categories, wall-crossing, and its applications to birational geometry of moduli spaces of sheaves. I will assume a passing familiarity with derived categories.

- Introduction to stability conditions. I will start with a gentle review of aspects of derived categories. Then an informal introduction to Bridgeland's notion of stability conditions on derived categories ...[+]

14D20 ; 14E30 ; 14J28 ; 18E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This lecture series will be an introduction to stability conditions on derived categories, wall-crossing, and its applications to birational geometry of moduli spaces of sheaves. I will assume a passing familiarity with derived categories.

- Introduction to stability conditions. I will start with a gentle review of aspects of derived categories. Then an informal introduction to Bridgeland's notion of stability conditions on derived categories [2, 5, 6]. I will then proceed to explain the concept of wall-crossing, both in theory, and in examples [1, 2, 4, 6].

- Wall-crossing and birational geometry. Every moduli space of Bridgeland-stable objects comes equipped with a canonically defined nef line bundle. This systematically explains the connection between wall-crossing and birational geometry of moduli spaces. I will explain and illustrate the underlying construction [7].

- Applications : Moduli spaces of sheaves on $K3$ surfaces. I will explain how one can use the theory explained in the previous talk in order to systematically study the birational geometry of moduli spaces of sheaves, focussing on $K3$ surfaces [1, 8].[-]
This lecture series will be an introduction to stability conditions on derived categories, wall-crossing, and its applications to birational geometry of moduli spaces of sheaves. I will assume a passing familiarity with derived categories.

- Introduction to stability conditions. I will start with a gentle review of aspects of derived categories. Then an informal introduction to Bridgeland's notion of stability conditions on derived categories ...[+]

14D20 ; 14E30 ; 14J28 ; 18E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study two types of actions on King's moduli spaces of quiver representations over a field k, and we decompose their fixed loci using group cohomology in order to give modular interpretations of the components. The first type of action arises by considering finite groups of quiver automorphisms. The second is the absolute Galois group of a perfect field k acting on the points of this quiver moduli space valued in an algebraic closure of k; the fixed locus is the set of k-rational points, which we decompose using the Brauer group of k, and we describe the rational points as quiver representations over central division algebras over k. Over the field of complex numbers, we describe the symplectic and holomorphic geometry of these fixed loci in hyperkaehler quiver varieties using the language of branes. Over the reals, the rational points of these quiver moduli spaces come from either real or quaternionic quiver representations, and we compute the Poincaré polynomials of both components.
This is joint work with Florent Schaffhauser.[-]
We study two types of actions on King's moduli spaces of quiver representations over a field k, and we decompose their fixed loci using group cohomology in order to give modular interpretations of the components. The first type of action arises by considering finite groups of quiver automorphisms. The second is the absolute Galois group of a perfect field k acting on the points of this quiver moduli space valued in an algebraic closure of k; the ...[+]

14D20 ; 14L24

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

The Verlinde formula for Higgs bundles - Andersen, Jorgen Ellegaard (Auteur de la Conférence) | CIRM H

Post-edited

In this talk we will present a Verlinde formula for the quantization of the Higgs bundle moduli spaces and stacks for any simple and simply-connected group. We further present a Verlinde formula for the quantization of parabolic Higgs bundle moduli spaces and stacks. We will explain how all these dimensions fit into a one parameter family of 2D TQFT's, encoded in a one parameter family of Frobenius algebras, which we will construct.

14D20 ; 14H60 ; 57R56 ; 81T40 ; 14F05 ; 14H10 ; 22E46 ; 81T45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The ends of the Hitchin moduli space - Fredrickson, Laura (Auteur de la Conférence) | CIRM H

Multi angle

Hitchin's equations are a system of gauge theoretic equations on a Riemann surface that are of interest in many areas including representation theory, Teichmu ̈ller theory, and the geometric Langlands correspondence. In this talk, I'll describe what solutions of SL(n, C)-Hitchin's equations “near the ends” of the moduli space look like, and the resulting compactification of the Hitchin moduli space. Wild Hitchin moduli spaces are an important ingredient in this construction. This construction generalizes Mazzeo-Swoboda-Weiss-Witt's construction of SL(2, C)-solutions of Hitchin's equations where the Higgs field is “simple.”[-]
Hitchin's equations are a system of gauge theoretic equations on a Riemann surface that are of interest in many areas including representation theory, Teichmu ̈ller theory, and the geometric Langlands correspondence. In this talk, I'll describe what solutions of SL(n, C)-Hitchin's equations “near the ends” of the moduli space look like, and the resulting compactification of the Hitchin moduli space. Wild Hitchin moduli spaces are an important ...[+]

14D20 ; 14D21 ; 14H70 ; 14H60 ; 14K25 ; 14P25 ; 53C07 ; 53D50 ; 53D30 ; 81T45 ; 81T15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The large scale geometry of the Higgs bundle moduli space - Swoboda, Jan (Auteur de la Conférence) | CIRM H

Multi angle

In this talk I will explain recent joint work with Rafe Mazzeo, Hartmut Weiss and Frederik Witt on the asymptotics of the natural $L^2$-metric $G_{L^2}$ on the moduli space $\mathcal{M}$ of rank-2 Higgs bundles over a Riemann surface $\Sigma$ as given by the set of solutions to the so-called self-duality equations
$\begin{cases}
&0 = \bar{\partial}_A \Phi \\
& 0 = F_A + [ \Phi \wedge \Phi^*]
\end{cases}$
for a unitary connection $A$ and a Higgs field $\Phi$ on $\Sigma$. I will show that on the regular part of the Hitchin fibration ($A$, $\Phi$) $\rightarrow$ det $\Phi$ this metric is well-approximated by the semiflat metric $G_{sf}$ coming from the completely integrable system on $\mathcal{M}$. This also reveals the asymptotically conic structure of $G_{L^2}$, with (generic) fibres of the above fibration being asymptotically flat tori. This result confirms some aspects of a more general conjectural picture made by Gaiotto, Moore and Neitzke. Its proof is based on a detailed understanding of the ends structure of $\mathcal{M}$. The analytic methods used there in addition yield a complete asymptotic expansion of the difference $G_{L^2} − G_{sf}$ between the two metrics.[-]
In this talk I will explain recent joint work with Rafe Mazzeo, Hartmut Weiss and Frederik Witt on the asymptotics of the natural $L^2$-metric $G_{L^2}$ on the moduli space $\mathcal{M}$ of rank-2 Higgs bundles over a Riemann surface $\Sigma$ as given by the set of solutions to the so-called self-duality equations
$\begin{cases}
&0 = \bar{\partial}_A \Phi \\
& 0 = F_A + [ \Phi \wedge \Phi^*]
\end{cases}$
for a unitary connection $A$ and a ...[+]

53C07 ; 53C26 ; 53D18 ; 14H60 ; 14D20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Using Szenes formula for multiple Bernoulli series, we explain how to compute Witten series associated to classical Lie algebras. Particular instances of these series compute volumes of moduli spaces of flat bundles over surfaces, and also certain multiple zeta values.
This is joint work with V. Baldoni and M. Vergne.

11B68 ; 11M32 ; 11M41 ; 14D20 ; 17B20 ; 17B22 ; 32S22 ; 53D30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Moduli of algebraic varieties - Dervan, Ruadhai (Auteur de la Conférence) | CIRM H

Multi angle

One of the central problems in algebraic geometry is to form a reasonable (e.g. Hausdorff) moduli space of smooth polarised varieties. I will show how one can solve this problem using canonical Kähler metrics. This is joint work with Philipp Naumann.

14D20 ; 32Q15 ; 53C55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Arithmetic of rank one local systems - Esnault, Hélène (Auteur de la Conférence) | CIRM H

Multi angle

Joint with Moritz Kerz. We study arithmetic subvarieties of the character variety of normal complex varieties defined over a field of finite type.

14D20 ; 14F05 ; 14F10 ; 14F30 ; 14K15

Sélection Signaler une erreur