En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 32S30 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. After a short survey of this work, I will explain a theorem which, in the case when the space is rig-smooth, compares those groups and the de Rham cohomology groups of the space. The latter are provided with the Gauss-Manin connection and an additional structure which allow one to recover from them the "etale" cohomology groups with complex coefficients.[-]
In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. ...[+]

32P05 ; 14F20 ; 14F40 ; 14G22 ; 32S30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We compare symplectic fillings of a link of a complex surface singularity with smoothings of the singularity (please see the attached notes).

57K43 ; 32S30 ; 57K33

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Global smoothings of toroidal crossing varieties - Ruddat, Helge (Auteur de la Conférence) | CIRM H

Multi angle

I am going to define toroidal crossing singularities and toroidal crossing varieties and explain how to produce them in large quantities by subdividing lattice polytopes. I will then explain the statement of a global smoothing theorem proved jointly with Felten and Filip. The theorem follows the tradition of well-known theorems by Friedman, Kawamata-Namikawa and Gross-Siebert. In order to apply a variant of the theorem to construct (conjecturally all) projective Fano manifolds with non-empty anticanonical divisor, Corti and Petracci discovered the necessity to allow for particular singular log structures that are known by the inspiring name 'admissible'. I will explain the beautiful classical geometric curve-in-surface geometry that underlies this notion and hint at why we believe that we can feed these singular log structures into the smoothing theorem in order to produce all 98 Fano threefolds with very ample anticanonical class by a single method.[-]
I am going to define toroidal crossing singularities and toroidal crossing varieties and explain how to produce them in large quantities by subdividing lattice polytopes. I will then explain the statement of a global smoothing theorem proved jointly with Felten and Filip. The theorem follows the tradition of well-known theorems by Friedman, Kawamata-Namikawa and Gross-Siebert. In order to apply a variant of the theorem to construct (con...[+]

13D10 ; 14D15 ; 32G05 ; 32S30 ; 14J32 ; 14J45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk will describe ongoing joint work with Paul Cadman and Duco van Straten, based on the PhD thesis of the former. Givental and Varchenko used the period mapping to pull back the intersection form on the Milnor fibre of an irreducible plane curve singularity $C$, and thereby define a symplectic structure on the base space of a miniversal deformation. We show how to combine this with a symmetric basis for the module of vector fields tangent to the discriminant, to produce involutive ideals $I_k$ which define the strata of parameter values $u$ such that $\delta(C_u)\leq k$. In the process we find an unexpected Lie algebra and a still mysterious canonical deformation of the module structure of the critical space over the discriminant. Much of this work is experimental - a crucial gap in understanding still needs bridging.[-]
This talk will describe ongoing joint work with Paul Cadman and Duco van Straten, based on the PhD thesis of the former. Givental and Varchenko used the period mapping to pull back the intersection form on the Milnor fibre of an irreducible plane curve singularity $C$, and thereby define a symplectic structure on the base space of a miniversal deformation. We show how to combine this with a symmetric basis for the module of vector fields tangent ...[+]

14H20 ; 14H50 ; 32S30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $(X,0)$ be an ICIS of dimension $2$ and let $f :(X,0)\to\mathbb{C} ^2$ be a map germ with an isolated instability. Given $F : (\mathcal{X} , 0) \to (\mathbb{C} \times \mathbb{C}^2, 0)$ a stable unfolding of $f$, we look to the invariants related to the family $f_s$ and we find relations between them. We obtain necessary and sufficient conditions for $F$ to be Whitney equisingular. (Joint work with B. Orfice-Okamoto and J. N. Tomazella)

32S30 ; 58K15 ; 58K40 ; 32S05

Sélection Signaler une erreur