En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Mishna, Marni 11 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

The classification of excursions - Mishna, Marni (Author of the conference) | CIRM H

Multi angle

Excursions are walks which start and end at prescribed locations. In this talk we consider the counting sequences of excursions, more precisely, the functional equations their generating functions satisfy. We focus on two sources of excursion problems: walks defined by their allowable steps, taken on integer lattices restricted to cones; and walks on Cayley graphs with a given set of generators. The latter is related to the cogrowth problems of groups. In both cases we are interested in relating the nature of the generating function (i.e. rational, algebraic, D-finite, etc.) and combinatorial properties of the models. We are also interested in the relation between the excursions, and less restricted families of walks.
Please note: A few corrections were made to the PDF file of this talk, the new version is available at the bottom of the page.[-]
Excursions are walks which start and end at prescribed locations. In this talk we consider the counting sequences of excursions, more precisely, the functional equations their generating functions satisfy. We focus on two sources of excursion problems: walks defined by their allowable steps, taken on integer lattices restricted to cones; and walks on Cayley graphs with a given set of generators. The latter is related to the cogrowth problems of ...[+]

05A15 ; 05C25 ; 60G50 ; 20F05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Dans cet exposé, je présente une approche d'énumération asymptotique du type guess-and-check pour certaines récurrences, à travers de l'étude des arbres binaires compactés. Un arbre binaire compacté est un graphe acyclique dirigé qui encode un arbre binaire, où on garde une seule copie pour les sous-arbres identiques. Nous prouvons que le nombre des arbres binaires compactés de taille n est asymptotiquement $\Theta\left(n ! 4^n \exp \left(3 a_1 n^{1 / 3}\right) n^{3 / 4}\right)$, avec $a_1 \sim-2.338$ la plus grande racine de la fonction d'Airy. Typiquement, cette expression asymptotique contient un exponentiel étiré, qui est rare et intéressant dans l'énumération asymptotique. Pour arriver à ce résultat, nous postulons d'abord une récurrence à deux paramètres pour ces nombres, puis nous devinons la forme de l'asymptotique et la démontrons toujours à travers de la récurrence. Je présenterai aussi quelques autres applications, et notre effort à généraliser cette méthode.
Travail commun avec Andrew Elvey Price et Michael Wallner.
https://igm.univ-mlv.fr/~wfang/[-]
Dans cet exposé, je présente une approche d'énumération asymptotique du type guess-and-check pour certaines récurrences, à travers de l'étude des arbres binaires compactés. Un arbre binaire compacté est un graphe acyclique dirigé qui encode un arbre binaire, où on garde une seule copie pour les sous-arbres identiques. Nous prouvons que le nombre des arbres binaires compactés de taille n est asymptotiquement $\Theta\left(n ! 4^n \exp \left(3 a_1 ...[+]

05C30 ; 05A16 ; 05C20 ; 05C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The course presents the mathematical software SageMath and most specifically its usage for research in combinatorics. We will focus on families of combinatorial objects, especially related to the Tamari lattice, and their implementation in the context of object oriented programming.
https://www.lri.fr/~pons/

05-00 ; 05E99 ; 05A99

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random walks on simplicial complexes - Tran, Viet Chi (Author of the conference) | CIRM H

Multi angle

Motivated by the discovery of hard-to-find social networks in epidemiology, we consider the question of exploring the topology of random structures (such as a random graph G) by random walks. The usual random walk jumps from a vertex of G to a neighboring vertex, with providing information on the connected components of the graph G. The number of these connected components is the Betti number $beta_{0}$. To gather further information on the higher Betti numbers that describe the topology of the graph, we can consider the simplicial complex C associated to the graph G: a k-simplex (edge for k = 1, triangle for k = 2, tetrahedron for k = 3 etc.) belongs to C if all the lower (k-1)-simplices that constitute it also belong to C. For example, a triangle belongs to C if its three edges are in the graph G. Several random walks have already been proposed recently to explore these structures. We introduce a new random walk, whose generator is related to a Laplacian of higher order of the graph and to the Betti number betak. A rescaling of the walk for k = 2 (cycle-valued random walk), and on regular triangulation of the torus, is also detailed. We embed the space of chains into spaces of currents to establish the limiting theorem.
Joint work with T. Bonis, L. Decreusefond and Z. Zhang.
https://perso.math.u-pem.fr/tran.viet-chi/[-]
Motivated by the discovery of hard-to-find social networks in epidemiology, we consider the question of exploring the topology of random structures (such as a random graph G) by random walks. The usual random walk jumps from a vertex of G to a neighboring vertex, with providing information on the connected components of the graph G. The number of these connected components is the Betti number $beta_{0}$. To gather further information on the ...[+]

60D05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. L'exposé sera centré sur la description des polytopes aléatoires qui sont construits comme enveloppes convexes d'un ensemble aléatoire de points. On s'intéressera plus particulièrement aux cas d'un nuage de points uniformes dans un corps convexe fixé ou d'un nuage de points gaussiens et on se focalisera sur l'étude asymptotique de grandeurs aléatoires associées, en particulier via des calculs de variances limites. Seront également évoqués d'autres modèles classiques de la géométrie aléatoire tels que la mosaïque de Poisson-Voronoi.[-]
La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. ...[+]

60D05 ; 60F05 ; 52A22 ; 60G55

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
L'objectif de ce mini-cours est de présenter de la façon la plus élémentaire possible la convergence faible locale des graphes introduite par Benjamini et Schramm en 2001 et développée par Aldous et Steele (2004), Aldous et Lyons (2007). Nous montrerons comment cette notion peut être utilisée dans des dénombrements asymptotiques et dans des problèmes d'optimisation combinatoire.

05C80 ; 60C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Le diamant aztèque - Cours 1 - Corteel, Sylvie (Author of the conference) | CIRM H

Multi angle

Le but du mini-cours sera de faire un cours introductif à différentes méthodes énumeratives à travers l'exemple des pavages par dominos du diamant aztèque. On essaiera de voir les fonctions (super)-symétriques, les moments de polynômes bi-orthogonaux, les évaluations de determinants, les algorithmes de génération...

05A15 ; 33C45

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Le diamant aztèque - Cours 2 - Corteel, Sylvie (Author of the conference) | CIRM H

Multi angle

Le but du mini-cours sera de faire un cours introductif à différentes méthodes énumeratives à travers l'exemple des pavages par dominos du diamant aztèque. On essaiera de voir les fonctions (super)-symétriques, les moments de polynômes bi-orthogonaux, les évaluations de determinants, les algorithmes de génération...

05A15 ; 33C45

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The course presents the mathematical software SageMath and most specifically its usage for research in combinatorics. We will focus on families of combinatorial objects, especially related to the Tamari lattice, and their implementation in the context of object oriented programming.
https://www.lri.fr/~pons/

05-00 ; 05E99 ; 05A99

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Probabilistic methods: entropy compression - Kardoš, František (Author of the conference) | CIRM H

Multi angle

We will overview two probabilistic methods used to prove the existence of diverse combinatorial objects with desired properties: First, we will introduce Lovász Local Lemma as a classical tool to prove that, informally speaking, with non-zero probability none of the “bad” events occur if those bad events are of low probability and somewhat essentially independent from each other. Next, we will move on to its algorithmic counterpart, the Entropy Compression Method, used to ensure that a randomized algorithm eventually finds a solution with desired properties. The two methods will be illustrated by applying them to various settings in graph theory, combinatorics, and geometry.
https://www.labri.fr/perso/fkardos/[-]
We will overview two probabilistic methods used to prove the existence of diverse combinatorial objects with desired properties: First, we will introduce Lovász Local Lemma as a classical tool to prove that, informally speaking, with non-zero probability none of the “bad” events occur if those bad events are of low probability and somewhat essentially independent from each other. Next, we will move on to its algorithmic counterpart, the Entropy ...[+]

05C15 ; 05C80

Bookmarks Report an error