En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 52A22 8 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
One of the most important question in Quantum Information Theory was to figure out whether the so-called Minimum Output Entropy (MOE) was additive. In this talk I will start by defining the counter-example originally built by Belinschi, Collins and Nechita. Then I will explain how with the help of a novel strategy, we managed with Collins to compute concentration estimate on the probability that the MOE is non-additive and how it yielded some explicit bounds for the dimension of spaces where violation of the MOE occurs. Finally, I will talk more in detail about this novel strategy which consists in interpolating random matrices and free operators with the help of free stochastic calculus.[-]
One of the most important question in Quantum Information Theory was to figure out whether the so-called Minimum Output Entropy (MOE) was additive. In this talk I will start by defining the counter-example originally built by Belinschi, Collins and Nechita. Then I will explain how with the help of a novel strategy, we managed with Collins to compute concentration estimate on the probability that the MOE is non-additive and how it yielded some ...[+]

60B20 ; 46L54 ; 52A22 ; 94A17

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Curvature measures of random sets - Zähle, Martina (Auteur de la Conférence) | CIRM H

Multi angle

A survey on some developments in curvature theory for random sets will be given. We first consider previous models with classical singularities like polyconvex sets or unions of sets with positive reach. The main part of the talk concerns extensions to certain classes of random fractals which have been investigated in the last years. In these cases limits of rescaled versions for suitable approximations are used.

53C65 ; 52A22 ; 60D05 ; 28A80 ; 28A75

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. L'exposé sera centré sur la description des polytopes aléatoires qui sont construits comme enveloppes convexes d'un ensemble aléatoire de points. On s'intéressera plus particulièrement aux cas d'un nuage de points uniformes dans un corps convexe fixé ou d'un nuage de points gaussiens et on se focalisera sur l'étude asymptotique de grandeurs aléatoires associées, en particulier via des calculs de variances limites. Seront également évoqués d'autres modèles classiques de la géométrie aléatoire tels que la mosaïque de Poisson-Voronoi.[-]
La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. ...[+]

60D05 ; 60F05 ; 52A22 ; 60G55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Random mosaics generated by stationary Poisson hyperplane processes in Euclidean space are a much studied object of Stochastic Geometry, and their typical cells or zero cells belong to the most prominent models of random polytopes. After a brief review, we turn to analogues in spherical space or, roughly equivalently, in a conic setting. A given number of i.i.d. random hyperplanes through the origin in $\mathbb{R}^d$ generate a tessellation of $\mathbb{R}^d$ into polyhedral cones. The typical cone of this tessellation, called a 'random Schläfli cone', is the object of our study. We provide first moments and mixed second moments of some geometric functionals, and compute probabilities of non-trivial intersection of a random Schläfli cone with a fixed polyhedral cone, or of two independent random Schläfli cones.

Parts are joint work with Matthias Reitzner, others with Daniel Hug.[-]
Random mosaics generated by stationary Poisson hyperplane processes in Euclidean space are a much studied object of Stochastic Geometry, and their typical cells or zero cells belong to the most prominent models of random polytopes. After a brief review, we turn to analogues in spherical space or, roughly equivalently, in a conic setting. A given number of i.i.d. random hyperplanes through the origin in $\mathbb{R}^d$ generate a tessellation of ...[+]

52A22 ; 60D05 ; 52A55 ; 52C35 ; 52B05 ; 51M20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random algebraic geometry - lecture 1 - Lerario, Antonio (Auteur de la Conférence) | CIRM H

Multi angle

In the last years there has been an increasing interest into the statistical behaviour of algebraic sets over non-algebraically closed fields: when the notion of 'generic' is no longer available, one seeks for a 'random' study of the objects of interest. In this course, divided into four lectures, I will present the major ideas in the subject (lecture notes will be made available):

1. Generic and random. In the first lecture I will discuss how to switch from the notion of generic, from classical algebraic geometry, to the notion of random. Of course, this depends on the choice of the probability distribution on the 'moduli space' of the objects of interest. I will discuss what are the reasonable choices in the case $\mathbb{K}=\mathbb{C}$ (where still these questions make sense, and 'random' and 'generic' are synonymous) and in the case $\mathbb{K}=\mathbb{R}$ (where spherical harmonics play a crucial role).[-]
In the last years there has been an increasing interest into the statistical behaviour of algebraic sets over non-algebraically closed fields: when the notion of 'generic' is no longer available, one seeks for a 'random' study of the objects of interest. In this course, divided into four lectures, I will present the major ideas in the subject (lecture notes will be made available):

1. Generic and random. In the first lecture I will discuss how ...[+]

14P05 ; 14P25 ; 52A22 ; 14N15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random algebraic geometry - lecture 2 - Lerario, Antonio (Auteur de la Conférence) | CIRM H

Multi angle

2. Degree and volume. In the second lecture I will try to explain to what extent the right notion of degree, in the probabilistic context, is the notion of volume. I will introduce the classical kinematic formula, over $\mathbb{R}$ and over $\mathbb{C}$, and explain the role of the Veronese variety in this context. In the complex case I will connect to the Bernstein-Khovanskii-Kouchnirenko Theorem.

14P05 ; 14P25 ; 52A22 ; 14N15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random algebraic geometry - lecture 3 - Lerario, Antonio (Auteur de la Conférence) | CIRM H

Multi angle

3. The square-root law and the topology of random hypersurfaces. In the third lecture I will focus on the case $\mathbb{K}=\mathbb{R}$ and explain in which sense random real algebraic geometry behaves as the 'square root' of complex algebraic geometry. I will discuss a probabilistic version of Hilbert's Sixteenth Problem, following the work of Gayet & Welschinger (introducing a local random version of Nash and Tognoli's Theorem and of Morse theory for the study of Betti numbers of random hypersurfaces) and of Diatta $\&$ Lerario (showing that 'most' hypersurfaces of degree $d$ are isotopic to hypersurfaces of degree $\sqrt{d \log d}$ ).[-]
3. The square-root law and the topology of random hypersurfaces. In the third lecture I will focus on the case $\mathbb{K}=\mathbb{R}$ and explain in which sense random real algebraic geometry behaves as the 'square root' of complex algebraic geometry. I will discuss a probabilistic version of Hilbert's Sixteenth Problem, following the work of Gayet & Welschinger (introducing a local random version of Nash and Tognoli's Theorem and of Morse ...[+]

14P05 ; 14P25 ; 52A22 ; 14N15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random algebraic geometry - lecture 4 - Lerario, Antonio (Auteur de la Conférence) | CIRM H

Multi angle

4. The zonoid ring and the nonarchimedean world. In the last lecture I will explain a ring-theoretical interpretation of the computations in random algebraic geometry, using a recently discovered ring structure on special convex bodies. This leads to the construction of a probabilistic version of Schubert calculus. In the final part of the lecture I will export some of the ideas from the previous lectures to the case $\mathbb{K}=\mathbb{Q}_{p}$, leaving with some open questions.[-]
4. The zonoid ring and the nonarchimedean world. In the last lecture I will explain a ring-theoretical interpretation of the computations in random algebraic geometry, using a recently discovered ring structure on special convex bodies. This leads to the construction of a probabilistic version of Schubert calculus. In the final part of the lecture I will export some of the ideas from the previous lectures to the case $\mathbb{K}=\mathbb{Q}_{p}$, ...[+]

14P05 ; 14P25 ; 52A22 ; 14N15

Sélection Signaler une erreur