En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Mouhot, Clément 6 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
​I will discuss recent developments concerning the non-uniqueness of distributional solutions to the Navier-Stokes equation.

35Q30 ; 76D05 ; 35Q35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Consider random conductances that allow long range jumps. In particular we consider conductances $C_{xy} = w_{xy}|x − y|^{−d−\alpha}$ for distinct $x, y \in Z^d$ and $0 < \alpha < 2$, where $\lbrace w_{xy} = w_{yx} : x, y \in Z^d\rbrace$ are non-negative independent random variables with mean 1. We prove that under some moment conditions for $w$, suitably rescaled Markov chains among the random conductances converge to a rotationally symmetric $\alpha$-stable process almost surely w.r.t. the randomness of the environments. The proof is a combination of analytic and probabilistic methods based on the recently established de Giorgi-Nash-Moser theory for processes with long range jumps. If time permits, we also discuss quenched heat kernel estimates as well. This is a joint work with Xin Chen (Shanghai) and Jian Wang (Fuzhou).[-]
Consider random conductances that allow long range jumps. In particular we consider conductances $C_{xy} = w_{xy}|x − y|^{−d−\alpha}$ for distinct $x, y \in Z^d$ and $0 < \alpha < 2$, where $\lbrace w_{xy} = w_{yx} : x, y \in Z^d\rbrace$ are non-negative independent random variables with mean 1. We prove that under some moment conditions for $w$, suitably rescaled Markov chains among the random conductances converge to a rotationally symmetric ...[+]

60G51 ; 60G52 ; 60J25 ; 60J75

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Stable phase transitions: from nonlocal to local - Serra, Joaquim (Auteur de la Conférence) | CIRM H

Multi angle

The talk will review the motivations, state of the art, recent results, and open questions on four very related PDE models related to phase transitions: Allen-Cahn, Peierls-Nabarro, Minimal surfaces, and Nonlocal Minimal surfaces. We will focus on the study of stable solutions (critical points of the corresponding energy functionals with nonnegative second variation). We will discuss new nonlocal results on stable phase transitions, explaining why the stability assumption gives stronger information in presence of nonlocal interactions. We will also comment on the open problems and obstructions in trying to make the nonlocal estimates robust as the long-range (or nonlocal) interactions become short-range (or local).[-]
The talk will review the motivations, state of the art, recent results, and open questions on four very related PDE models related to phase transitions: Allen-Cahn, Peierls-Nabarro, Minimal surfaces, and Nonlocal Minimal surfaces. We will focus on the study of stable solutions (critical points of the corresponding energy functionals with nonnegative second variation). We will discuss new nonlocal results on stable phase transitions, explaining ...[+]

82B26 ; 49Q05 ; 53A10 ; 35B35 ; 35R11

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss a joint work with Jose Canizo, Cao Chuqi and Havva Yolda. I will introduce Harris's theorem which is a classical theorem from the study of Markov Processes. Then I will discuss how to use this to show convergence to equilibrium for some spatially inhomogeneous kinetic equations involving jumps including jump processes which approximate diffusion or fractional diffusion in velocity. This is the situation in which the tools of 'Hypocoercivity' are used. I will discuss the connections to hypocoercivity theory and possible advantages and disadvantages of approaches via Harris's theorem.[-]
I will discuss a joint work with Jose Canizo, Cao Chuqi and Havva Yolda. I will introduce Harris's theorem which is a classical theorem from the study of Markov Processes. Then I will discuss how to use this to show convergence to equilibrium for some spatially inhomogeneous kinetic equations involving jumps including jump processes which approximate diffusion or fractional diffusion in velocity. This is the situation in which the tools of ...[+]

35Q20 ; 35B40 ; 60J75 ; 82C40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Linear Boltzmann equation and fractional diffusion - Golse, François (Auteur de la Conférence) | CIRM H

Multi angle

(Work in collaboration with C. Bardos and I. Moyano). Consider the linear Boltzmann equation of radiative transfer in a half-space, with constant scattering coefficient $\sigma$. Assume that, on the boundary of the half-space, the radiation intensity satisfies the Lambert (i.e. diffuse) reflection law with albedo coefficient $\alpha$. Moreover, assume that there is a temperature gradient on the boundary of the half-space, which radiates energy in the half-space according to the Stefan-Boltzmann law. In the asymptotic regime where $\sigma \to +\infty$ and $1 − \alpha ∼ C/\sigma$, we prove that the radiation pressure exerted on the boundary of the half-space is governed by a fractional diffusion equation. This result provides an example of fractional diffusion asymptotic limit of
a kinetic model which is based on the harmonic extension definition of $\sqrt{−\Delta}$. This fractional diffusion limit therefore differs from most of other such limits for kinetic models reported in the literature, which are based on specific properties of the equilibrium distributions (“heavy tails”) or of the scattering coefficient as in [U. Frisch-H. Frisch: Mon. Not. R. Astr. Not. 181 (1977), 273–280].[-]
(Work in collaboration with C. Bardos and I. Moyano). Consider the linear Boltzmann equation of radiative transfer in a half-space, with constant scattering coefficient $\sigma$. Assume that, on the boundary of the half-space, the radiation intensity satisfies the Lambert (i.e. diffuse) reflection law with albedo coefficient $\alpha$. Moreover, assume that there is a temperature gradient on the boundary of the half-space, which radiates energy ...[+]

45K05 ; 45M05 ; 35R11 ; 82C70 ; 85A25 ; 35Q20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quantitative De Giorgi methods in kinetic theory - Mouhot, Clément (Auteur de la Conférence) | CIRM H

Virtualconference

We consider hypoelliptic equations of kinetic Fokker-Planck type, also sometimes called of Kolmogorov or Langevin type, with rough coefficients in the drift-diffusion operator in velocity. We present novel short quantitative proofs of the De Giorgi intermediate-value Lemma as well as weak Harnack and Harnack inequalities (which imply Hölder continuity with quantitative estimates).
This is a joint work with Jessica Guerand.

35Q84 ; 35B45 ; 35B65

Sélection Signaler une erreur