En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Search by event 1721 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Algebraic sums and products of univoque bases - Dajani, Karma (Auteur de la Conférence) | CIRM H

Multi angle

Given $x\in(0, 1]$, let ${\mathcal U}(x)$ be the set of bases $\beta\in(1,2]$ for which there exists a unique sequence $(d_i)$ of zeros and ones such that $x=\sum_{i=1}^{\infty}{{d_i}/{\beta^i}}$. In 2014, Lü, Tan and Wu proved that ${\mathcal U}(x)$ is a Lebesgue null set of full Hausdorff dimension. In this talk, we will show that the algebraic sum ${\mathcal U}(x)+\lambda {\mathcal U}(x)$, and the product ${\mathcal U}(x)\cdot {\mathcal U}(x)^{\lambda}$ contain an interval for all $x\in (0, 1]$ and $\lambda\ne 0$. As an application we show that the same phenomenon occurs for the set of non-matching parameters associated with the family of symmetric binary expansions studied recently by the first speaker and C. Kalle.
This is joint work with V. Komornik, D. Kong and W. Li.[-]
Given $x\in(0, 1]$, let ${\mathcal U}(x)$ be the set of bases $\beta\in(1,2]$ for which there exists a unique sequence $(d_i)$ of zeros and ones such that $x=\sum_{i=1}^{\infty}{{d_i}/{\beta^i}}$. In 2014, Lü, Tan and Wu proved that ${\mathcal U}(x)$ is a Lebesgue null set of full Hausdorff dimension. In this talk, we will show that the algebraic sum ${\mathcal U}(x)+\lambda {\mathcal U}(x)$, and the product ${\mathcal U}(x)\cdot {\mathcal ...[+]

28A80 ; 11A63 ; 37B10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Yet another characterization of the Pisot conjecture - Mercat, Paul (Auteur de la Conférence) | CIRM H

Multi angle

In the way of Arnoux-Ito, we give a general geometric criterion for a subshift to be measurably conjugated to a domain exchange and to a translation on a torus. For a subshift coming from an unit Pisot irreducible substitution, we will see that it becomes a simple topological criterion. More precisely, we define a topology on $\mathbb{Z}^d$ for which the subshift has pure discrete spectrum if and only if there exists a domain of the domain exchange on the discrete line that has non-empty interior. We will see how we can compute exactly such interior using regular languages. This gives a way to decide the Pisot conjecture for any example of unit Pisot irreducible substitution.
Joint work with Shigeki Akiyama.[-]
In the way of Arnoux-Ito, we give a general geometric criterion for a subshift to be measurably conjugated to a domain exchange and to a translation on a torus. For a subshift coming from an unit Pisot irreducible substitution, we will see that it becomes a simple topological criterion. More precisely, we define a topology on $\mathbb{Z}^d$ for which the subshift has pure discrete spectrum if and only if there exists a domain of the domain ...[+]

37B10 ; 28A80 ; 11A63 ; 68R15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A perspective on the The Fibonacci trace map - Damanik, David (Auteur de la Conférence) | CIRM H

Multi angle

In this talk we explain how the Fibonacci trace map arises from the Fibonacci substitution and leads to a unified framework in which a variety of models can be studied. We discuss the associated foliations, hyperbolic sets, stable and unstable manifolds, and how the intersections of the stable manifolds with the model-dependent curve of initial conditions allow one to translate dynamical into spectral results.

81Q10 ; 81Q35 ; 37D20 ; 37D50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Bounded remainder sets for a dynamical system are sets for which the Birkhoff averages of return times differ from the expected values by at most a constant amount. These sets are rare and important objects which have been studied for over 100 years. In the last few years there have been a number of results which culminated in explicit constructions of bounded remainder sets for toral rotations in any dimension, of all possible allowable volumes. In this talk we are going to explain these results, and then explain how to generalize them to give explicit constructions of bounded remainder sets for rotations in $p$-adic solenoids. Our method of proof will make use of a natural dynamical encoding of patterns in non-Archimedean cut and project sets.[-]
Bounded remainder sets for a dynamical system are sets for which the Birkhoff averages of return times differ from the expected values by at most a constant amount. These sets are rare and important objects which have been studied for over 100 years. In the last few years there have been a number of results which culminated in explicit constructions of bounded remainder sets for toral rotations in any dimension, of all possible allowable ...[+]

11K06 ; 11K38 ; 11J71

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Dimension groups and recurrence for tree subshifts - Berthé, Valérie (Auteur de la Conférence) | CIRM H

Multi angle

Dimension groups are invariants of orbital equivalence. We show in this lecture how to compute the dimension group of tree subshifts. Tree subshifts are defined in terms of extension graphs that describe the left and right extensions of factors of their languages: the extension graphs are trees. This class of subshifts includes classical families such as Sturmian, Arnoux-Rauzy subshifts, or else, codings of interval exchanges. We rely on return word properties for tree subshifts: every finite word in the language of a tree word admits exactly d return words, where d is the cardinality of the alphabet.
This is joint work with P. Cecchi, F. Dolce, F. Durand, J. Leroy, D. Perrin, S. Petite.[-]
Dimension groups are invariants of orbital equivalence. We show in this lecture how to compute the dimension group of tree subshifts. Tree subshifts are defined in terms of extension graphs that describe the left and right extensions of factors of their languages: the extension graphs are trees. This class of subshifts includes classical families such as Sturmian, Arnoux-Rauzy subshifts, or else, codings of interval exchanges. We rely on return ...[+]

37A20 ; 37B10 ; 68R15 ; 68Q45

Sélection Signaler une erreur