En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35Q93 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Control of the motion of a set of particles - Glass, Olivier (Auteur de la Conférence) | CIRM H

Multi angle

We consider the problem of lagrangian controllability for two models of fluids. The lagrangian controllability consists in the possibility of prescribing the motion of a set of particle from one place to another in a given time. The two models under view are the Euler equation for incompressible inviscid fluids, and the quasistatic Stokes equation for incompressible viscous fluids. These results were obtained in collaboration with Thierry Horsin (Conservatoire National des Arts et Métiers, Paris)[-]
We consider the problem of lagrangian controllability for two models of fluids. The lagrangian controllability consists in the possibility of prescribing the motion of a set of particle from one place to another in a given time. The two models under view are the Euler equation for incompressible inviscid fluids, and the quasistatic Stokes equation for incompressible viscous fluids. These results were obtained in collaboration with Thierry Horsin ...[+]

35Q93 ; 35Q31 ; 76D55 ; 93B05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mathematical analysis of geophysical models - Titi, Edriss S. (Auteur de la Conférence) | CIRM H

Multi angle

In this course I will be covering three main topics. The first part will be concerning the NavierStokes and Euler equations - a quick survey. The second part will discuss the question of global regularity of certain geophysical flows. The third part about coupling the atmospheric models with the microphysics dynamics of moisture in warm clouds formation.
The basic problem faced in geophysical fluid dynamics is that a mathematical description based only on fundamental physical principles, which are called the 'Primitive Equations', is often prohibitively expensive computationally, and hard to study analytically. In these introductory lectures, aimed toward graduate students and postdocs, I will survey the mathematical theory of the 2D and 3D Navier-Stokes and Euler equations, and stress the main obstacles in proving the global regularity for the 3D case, and the computational challenge in their direct numerical simulations. In addition, I will emphasize the issues facing the turbulence community in their turbulence closure models. However, taking advantage of certain geophysical balances and situations, such as geostrophic balance and the shallowness of the ocean and atmosphere, I will show how geophysicists derive more simplified models which are easier to study analytically. In particular, I will prove the global regularity for 3D planetary geophysical models and the Primitive equations of large scale oceanic and atmospheric dynamics with various kinds of anisotropic viscosity and diffusion. Moreover, I will also show that for certain class of initial data the solutions of the inviscid 2D and 3D Primitive Equations blowup (develop a singularity).[-]
In this course I will be covering three main topics. The first part will be concerning the NavierStokes and Euler equations - a quick survey. The second part will discuss the question of global regularity of certain geophysical flows. The third part about coupling the atmospheric models with the microphysics dynamics of moisture in warm clouds formation.
The basic problem faced in geophysical fluid dynamics is that a mathematical description ...[+]

35Q86 ; 35Q35 ; 35Q93 ; 76D05 ; 35Q30 ; 86A05 ; 86A10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Decay rate of pH systems with boundary dissipation - Morris, Kirsten (Auteur de la Conférence) | CIRM H

Multi angle

The multiplier approach is applied to a class of port-Hamiltonian systems with boundary dissipation to establish exponential decay. The exponential stability of port-Hamiltonian systems has been studied and sufficient conditions obtained. Here the decay rate $Me^{-\alpha t}$ is established with $M$ and $\alpha$ are in terms of system parameters. This approach is illustrated by several examples, in particular, boundary stabilization of a piezoelectric beam with magnetic effects.[-]
The multiplier approach is applied to a class of port-Hamiltonian systems with boundary dissipation to establish exponential decay. The exponential stability of port-Hamiltonian systems has been studied and sufficient conditions obtained. Here the decay rate $Me^{-\alpha t}$ is established with $M$ and $\alpha$ are in terms of system parameters. This approach is illustrated by several examples, in particular, boundary stabilization of a ...[+]

35B35 ; 35Q93 ; 93B52 ; 93C20 ; 93D23

Sélection Signaler une erreur