En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 624 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Distributions of Frobenius of elliptic curves #1 - David, Chantal (Auteur de la Conférence) | CIRM H

Single angle

In all the following, let an elliptic curve $E$ defined over $\mathbb{Q}$ without complex multiplication. For every prime $\ell$, let $E[\ell]= E[\ell](\overline{\mathbb{Q}})$ be the group of  $\ell$-torsion points of  $E$, and let $K_\ell$  be the field extension obtained from $\mathbb{Q}$ by adding the coordinates of the $\ell$-torsion points of $E $. This is a Galois extension of$\mathbb{Q}$ , andGal$(K_\ell/\mathbb{Q})\subseteq GL_2(\mathbb{Z}/\ell\mathbb{Z})$.
Using the Chebotarev density theorem for the extensions $K_\ell/\mathbb{Q}$ associated to a given curve $E$, we can study various sequences associated to the reductions of a global curve $E/(\mathbb{Q}$, as the sequences
$\left \{\#E(\mathbb{F}_p)=p+1-a_p(E)\right \}_{p\: primes}, or \left \{ a_p(E)=r \right \}_{p\: primes}$
for some fixed value $r\in \mathbb{Z}$. For example, if  $\pi_{E,r}(x)= \#\left \{ p\leq x : a_p(E)=r \right \}$,
then it was shown by Serre and K. Murty, R. Murty and Saradha that under the GRH,
$\pi_{E,r}(x)\ll x^{4/5} log^{-1/5}x$, for all $r\in \mathbb{Z}$, and $ \pi_{E,0}(x)\ll x^{3/4}$.
There are also some weaker bounds without the GRH. Some other sequences may also be treated by apply-ing the Chebotarev density theorem to other extensions of $\mathbb{Q} $ as the ones coming from the “mixed Galois representations” associated to $E[\ell]$ and a given quadratic field $K$  which can be used to get upper bounds onthe number of primes $p$ such that End $(E/\mathbb{F}_p)\bigotimes \mathbb{Q}$  is isomorphic to a given quadratic imaginary field $K$ .
We will also explain how the densities obtained from the Cheboratev density theorem can be used togetherwith sieve techniques. For a first application, we consider a conjecture of Koblitz which predicts that
$\pi_{E}^{twin}(x):=\#\left \{ p\leq x : p+1-a_p(E)\, is\, prime \right \}\sim C_{E}^{twin}\frac{x}{log^2x}$
This is analogue to the classical twin prime conjecture, and the constant $C_{E}^{twin}$  can be explicitly writtenas an Euler product like the twin prime constant. We explain how classical sieve techniques can be usedto show that under the GRH, there are at least 2.778 $C_{E}^{twin}x/log^2x$ primes $p$ such that $p+1-a_p(E)^2$ has at most 8 prime factors, counted with multiplicity. We also explain some possible generalisation of Koblitz conjectures which could be treated by similar techniques given some explicitversions (i.e. with explicit error terms) of density theorems existing in the literature.
Other examples of sieving using the Chebotarev density theorem in the context of elliptic curves are thegeneralisations of Hooley's proof of the Artin's conjecture on primitive roots (again under the GRH).Using a similar techniques, but replacing the cyclotomic fields by the $\ell$-division fields $K_\ell$  of a given elliptic curve $E/\mathbb{Q}$, Serre showed that there is a positive proportion of primes $p$ such that the group $E(\mathbb{F}_p)$ is cyclic (when $E$ does not have a rational 2-torsion point). This was generalised by Cojocaru and Duke, and is also related to counting square-free elements of the sequence $a_p(E)^2-4p$,,which still resists a proof with the same techniques (without assuming results stronger than the GRH).
Finally, we also discuss some new distribution questions related to elliptic curves that are very similar to the questions that could be attacked with the Chebotarev density theorem, but are still completely open(for example, no non-trivial upper bounds exists). The first question was first considered by Silverman and Stange who defined an amicable pair of an elliptic curve $E/\mathbb{Q}$  to be a pair of primes $(p,q)$ such that
$p+1-a_p(E)=q$, and $q+1-a_q(E)=p$.
They predicted that the number of such pairs should be about $\sqrt{x}/log^2x$ for elliptic curves without complex multiplication. A precise conjecture with an explicit asymptotic was made by Jones, who also provided numerical evidence for his conjecture. Among the few results existing in the literature for thisquestion is the work of Parks who gave an upper bound of the correct order of magnitude for the average number (averaging over all elliptic curves) of amicable pairs (and aliquot cycles which are cycles of length $L$). But a non-trivial upper bound for a single elliptic curve is still not known.
Another completely open question is related to “champion primes”, which are primes $p$ such that $\#E(\mathbb{F}_p)$ is maximal, i.e. $a_p(E)=-[2\sqrt{p}]$. (This terminology was used for the first time by Hedetniemi, James andXue). In some work in progress with Wu, we make a conjecture and give some evidence for the number of champion primes associated to a given elliptic curve using the Sato-Tate conjecture (for verysmall intervals depending on $p$ i.e. in a range where the conjecture is still open). Again, this question iscompletely open, and there are no known non-trivial upper bound. There is also no numerical evidence for this question, and it would be nice to have some, possibly for more general “champion primes”, for examplelooking at $a_p(E)$ in a small interval of length $p^\varepsilon$ around $-[2\sqrt{p}]$. [-]
In all the following, let an elliptic curve $E$ defined over $\mathbb{Q}$ without complex multiplication. For every prime $\ell$, let $E[\ell]= E[\ell](\overline{\mathbb{Q}})$ be the group of  $\ell$-torsion points of  $E$, and let $K_\ell$  be the field extension obtained from $\mathbb{Q}$ by adding the coordinates of the $\ell$-torsion points of $E $. This is a Galois extension of$\mathbb{Q}$ , andGal$(K_\ell/\mathbb{Q})\subseteq GL_2...[+]

11G05 ; 11N36 ; 11F80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The combinatorics of successors of singular cardinals presents a number of interesting open problems. We discuss the interactions at successors of singular cardinals of two strong combinatorial properties, the stationary set reflection and the tree property. Assuming the consistency of infinitely many supercompact cardinals, we force a model in which both the stationary set reflection and the tree property hold at $\aleph_{\omega^2+1}$. Moreover, we prove that the two principles are independent at this cardinal, indeed assuming the consistency of infinitely many supercompact cardinals it is possible to force a model in which the stationary set reflection holds, but the tree property fails at $\aleph_{\omega^2+1}$. This is a joint work with Menachem Magidor.
Keywords : forcing - large cardinals - successors of singular cardinals - stationary reflection - tree property[-]
The combinatorics of successors of singular cardinals presents a number of interesting open problems. We discuss the interactions at successors of singular cardinals of two strong combinatorial properties, the stationary set reflection and the tree property. Assuming the consistency of infinitely many supercompact cardinals, we force a model in which both the stationary set reflection and the tree property hold at $\aleph_{\omega^2+1}$. ...[+]

03E05 ; 03E35 ; 03E55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Unramified graph covers of finite degree - Li, Winnie (Auteur de la Conférence) | CIRM H

Post-edited

Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density theorem.
This is a joint work with Hau-Wen Huang.[-]
Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density ...[+]

05C25 ; 05C50 ; 11R32 ; 11R44 ; 11R45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The theorem of Büchi-Bruyère states that a subset of $N^d$ is $b$-recognizable if and only if it is $b$-definable. As a corollary, the first-order theory of $(N,+,V_b)$ is decidable (where $V_b(n)$ is the largest power of the base $b$ dividing $n$). This classical result is a powerful tool in order to show that many properties of $b$-automatic sequences are decidable. The first part of my lecture will be devoted to presenting this result and its applications to $b$-automatic sequences. Then I will move to $b$-regular sequences, which can be viewed as a generalization of $b$-automatic sequences to integer-valued sequences. I will explain bow first-order logic can be used to show that many enumeration problems of $b$-automatic sequences give rise to corresponding $b$-regular sequences. Finally, I will consider more general frameworks than integer bases and (try to) give a state of the art of the research in this domain.[-]
The theorem of Büchi-Bruyère states that a subset of $N^d$ is $b$-recognizable if and only if it is $b$-definable. As a corollary, the first-order theory of $(N,+,V_b)$ is decidable (where $V_b(n)$ is the largest power of the base $b$ dividing $n$). This classical result is a powerful tool in order to show that many properties of $b$-automatic sequences are decidable. The first part of my lecture will be devoted to presenting this result and its ...[+]

68R15 ; 11B85 ; 68Q45 ; 03B25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Multiple ergodic theorems: old and new - Lecture 1 - Kra, Bryna (Auteur de la Conférence) | CIRM H

Post-edited

The classic mean ergodic theorem has been extended in numerous ways: multiple averages, polynomial iterates, weighted averages, along with combinations of these extensions. I will give an overview of these advances and the different techniques that have been used, focusing on convergence results and what can be said about the limits.

37A05 ; 37A25 ; 37A15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Simplicity of the Lyapunov spectrum revisited - Hamenstädt, Ursula (Auteur de la Conférence) | CIRM H

Multi angle

We give an algebraic proof of the simplicity of the Lyapunov spectrum for the Teichmüller flow on strata of abelian differentials. This proof extends to the Kontsevich Zorich cocycle over strata of quadratic differentials and can also be used to study the algebraic degree of pseudo-Anosov stretch factors.

37D35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

$D$-modules and $p$-curvatures - Esnault, Hélène (Auteur de la Conférence) | CIRM H

Multi angle

We show relations between rigidity of connections in characteristic 0 and nilpotency of their $p$-curvatures (a consequence of a conjecture by Simpson and of a generalization of Grothendieck's $p$-curvature conjecture).
Work in progress with Michael Groechenig.

14D05 ; 14E20 ; 14F05 ; 14F35 ; 14G17

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

An asymptotic regime for the Vlasov-Poisson system - Miot, Evelyne (Auteur de la Conférence) | CIRM H

Multi angle

We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we provide a first analysis of the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density with a moving point charge.

82D10 ; 82C40 ; 35Q35 ; 35Q83 ; 35Q31

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Invariant Subspace Problem for (separable) Hilbert spaces is a long-standing open question that traces back to Jonhn Von Neumann's works in the fifties asking, in particular, if every bounded linear operator acting on an infinite dimensional separable Hilbert space has a non-trivial closed invariant subspace. Whereas there are well-known classes of bounded linear operators on Hilbert spaces that are known to have non-trivial, closed invariant subspaces (normal operators, compact operators, polynomially compact operators,...), the question of characterizing the lattice of the invariant subspaces of just a particular bounded linear operator is known to be extremely difficult and indeed, it may solve the Invariant Subspace Problem.

In this talk, we will focus on those concrete operators that may solve the Invariant Subspace Problem, presenting some of their main properties, exhibiting old and new examples and recent results about them obtained in collaboration with Prof. Carl Cowen (Indiana University-Purdue University).[-]
The Invariant Subspace Problem for (separable) Hilbert spaces is a long-standing open question that traces back to Jonhn Von Neumann's works in the fifties asking, in particular, if every bounded linear operator acting on an infinite dimensional separable Hilbert space has a non-trivial closed invariant subspace. Whereas there are well-known classes of bounded linear operators on Hilbert spaces that are known to have non-trivial, closed ...[+]

47A15 ; 47B35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

New spectral bounds for damped systems - Tretter, Christiane (Auteur de la Conférence) | CIRM H

Multi angle

In this talk new enclosures for the spectra of operators associated with second order Cauchy problems are presented for non-selfadjoint damping. Our new results yield much better bounds than the numerical range of these non-selfadjoint operators for both uniformly accretive and sectorial damping.
(joint work with B. Jacob, Carsten Trunk and H. Vogt)

47A10 ; 47A12 ; 34G10 ; 47D06 ; 76Bxx

Sélection Signaler une erreur