En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35B40 24 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider a general time-periodic linear transport equation with integral source term and we prove the existence of a Floquet principal eigenvalue, namely a real number such that the equation rescaled by this number admits positive periodic solutions. We also prove the exponential attractiveness of these solutions. The method relies on general spectral results about positive operators.

35B10 ; 35B40 ; 35Q92 ; 35R01 ; 47B65

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We provide an asymptotic analysis of a nonlinear integro-differential equation which describes the evolutionary dynamics of a population which reproduces sexually and which is subject to selection and competition. The sexual reproduction is modeled via a nonlinear integral term, known as the 'infinitesimal model'. We consider a regime of small segregational variance, where a parameter in the infinitesimal operator, which measures the deviation between the trait of the offspring and the mean parental trait, is small. We prove that in this regime the phenotypic distribution remains close to a Gaussian profile with a fixed small variance and we characterize the dynamics of the mean phenotypic trait via an ordinary differential equation. We also briefly discuss the extension of the method to the study of steady solutions and their stability.[-]
We provide an asymptotic analysis of a nonlinear integro-differential equation which describes the evolutionary dynamics of a population which reproduces sexually and which is subject to selection and competition. The sexual reproduction is modeled via a nonlinear integral term, known as the 'infinitesimal model'. We consider a regime of small segregational variance, where a parameter in the infinitesimal operator, which measures the deviation ...[+]

35B40 ; 35Q92 ; 92D15 ; 47G20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider parabolic equations of the form $u_t = u_{xx} + f (u)$ on the real line. Unlike their counterparts on bounded intervals, these equations admit bounded solutions whose large-time dynamics is not governed by steady states. Even with respect to the locally uniform convergence, the solutions may not be quasiconvergent, that is, their omega-limit sets may contain nonstationary solutions.
We will start this lecture series by exhibiting several examples of non-quasiconvergent solutions, discussing also some entire solutions appearing in their omega-limit sets. Minimal assumptions on the nonlinearity are needed in the examples, which shows that non-quasiconvergent solutions occur very frequently in this type of equations. Our next goal will be to identify specific classes of initial data that lead to quasiconvergent solutions. These include localized initial data (joint work with Hiroshi Matano) and front-like initial data. Finally, in the last part of these lectures, we take a more global look at the solutions with such initial data. Employing propagating terraces, or stacked families of traveling fronts, we describe their entire spatial profile at large times.[-]
We consider parabolic equations of the form $u_t = u_{xx} + f (u)$ on the real line. Unlike their counterparts on bounded intervals, these equations admit bounded solutions whose large-time dynamics is not governed by steady states. Even with respect to the locally uniform convergence, the solutions may not be quasiconvergent, that is, their omega-limit sets may contain nonstationary solutions.
We will start this lecture series by exhibiting ...[+]

35B40 ; 35K15 ; 35K55

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Microlocal analysis for Kerr-de Sitter black holes - Vasy, Andras (Author of the conference) | CIRM H

Post-edited

In this lecture I will describe a framework for the Fredholm analysis of non-elliptic problems both on manifolds without boundary and manifolds with boundary, with a view towards wave propagation on Kerr-de-Sitter spaces, which is the key analytic ingredient for showing the stability of black holes (see Peter Hintz' lecture). This lecture focuses on the general setup such as microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as (potentially) normally hyperbolic trapping, as well as the role of resonances.[-]
In this lecture I will describe a framework for the Fredholm analysis of non-elliptic problems both on manifolds without boundary and manifolds with boundary, with a view towards wave propagation on Kerr-de-Sitter spaces, which is the key analytic ingredient for showing the stability of black holes (see Peter Hintz' lecture). This lecture focuses on the general setup such as microlocal ellipticity, real principal type propagation, radial points ...[+]

35A21 ; 35A27 ; 35B34 ; 35B40 ; 58J40 ; 58J47 ; 83C35 ; 83C57

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The stability of Kerr-de Sitter black holes - Hintz, Peter (Author of the conference) | CIRM H

Multi angle

In this lecture I will discuss Kerr-de Sitter black holes, which are rotating black holes in a universe with a positive cosmological constant, i.e. they are explicit solutions (in 3+1 dimensions) of Einstein's equations of general relativity. They are parameterized by their mass and angular momentum.
I will discuss the geometry of these black holes, and then talk about the stability question for these black holes in the initial value formulation. Namely, appropriately interpreted, Einstein's equations can be thought of as quasilinear wave equations, and then the question is if perturbations of the initial data produce solutions which are close to, and indeed asymptotic to, a Kerr-de Sitter black hole, typically with a different mass and angular momentum. In this talk, I will emphasize geometric aspects of the stability problem, in particular showing that Kerr-de Sitter black holes with small angular momentum are stable in this sense.[-]
In this lecture I will discuss Kerr-de Sitter black holes, which are rotating black holes in a universe with a positive cosmological constant, i.e. they are explicit solutions (in 3+1 dimensions) of Einstein's equations of general relativity. They are parameterized by their mass and angular momentum.
I will discuss the geometry of these black holes, and then talk about the stability question for these black holes in the initial value fo...[+]

35B40 ; 58J47 ; 83C05 ; 83C35 ; 83C57

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped modes. Associated eigenvalues $\lambda = k^2$ are embedded in the essential spectrum $\mathbb{R}^+$. They can be computed as the real part of the complex spectrum of a non-self-adjoint eigenvalue problem, defined by using the so-called Perfectly Matched Layers (which consist in a complex dilation in the infinite direction) [1].
We show here that it is possible, by modifying in particular the parameters of the Perfectly Matched Layers, to define new complex spectra which include, in addition to trapped modes, frequencies where the potential $V$ is, in some sense, invisible to one incident wave.
Our approach allows to extend to higher dimension the results obtained in [2] on a 1D model problem.[-]
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped ...[+]

35Q35 ; 35J05 ; 65N30 ; 41A60 ; 47H10 ; 76Q05 ; 35B40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The talk will discuss a recent result showing that certain type II blow up solutions constructed by Krieger-Schlag-Tataru are actually stable under small perturbations along a co-dimension one Lipschitz hypersurface in a suitable topology. This result is qualitatively optimal.
Joint work with Stefano Burzio (EPFL).

35L05 ; 35B40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss a joint work with Jose Canizo, Cao Chuqi and Havva Yolda. I will introduce Harris's theorem which is a classical theorem from the study of Markov Processes. Then I will discuss how to use this to show convergence to equilibrium for some spatially inhomogeneous kinetic equations involving jumps including jump processes which approximate diffusion or fractional diffusion in velocity. This is the situation in which the tools of 'Hypocoercivity' are used. I will discuss the connections to hypocoercivity theory and possible advantages and disadvantages of approaches via Harris's theorem.[-]
I will discuss a joint work with Jose Canizo, Cao Chuqi and Havva Yolda. I will introduce Harris's theorem which is a classical theorem from the study of Markov Processes. Then I will discuss how to use this to show convergence to equilibrium for some spatially inhomogeneous kinetic equations involving jumps including jump processes which approximate diffusion or fractional diffusion in velocity. This is the situation in which the tools of ...[+]

35Q20 ; 35B40 ; 60J75 ; 82C40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We are concerned with deriving sharp exponential decay estimates (i.e. with maximum rate and minimum multiplicative constant) for linear, hypocoercive evolution equations. Using a modal decomposition of the model allows to assemble a Lyapunov functional using Lyapunov matrix inequalities for each Fourier mode.
We shall illustrate the approach on the 1D Goldstein-Taylor model, a2-velocity transport-relaxation equation. On the torus the lowest Fourier modes determine the spectral gap of the whole equation in $L^{2}$. By contrast, on the whole real line the Goldstein-Taylor model does not have a spectral gap, since the decay rate of the Fourier modes approaches zero in the small mode limit. Hence, the decay is reduced to algebraic.
In the final part of the talk we consider the Goldstein-Taylor model with non-constant relaxation rate, which is hence not amenable to a modal decomposition. In this case we construct a Lyapunov functional of pseudodifferential nature, one that is motivated by the modal analysis in the constant case.The robustness of this approach is illustrated on a multi-velocity GoldsteinTaylor model, yielding explicit rates of convergence to the equilibrium.
This is joint work with J. Dolbeault, A. Einav, C. Schmeiser, B. Signorello, and T. Wöhrer.[-]
We are concerned with deriving sharp exponential decay estimates (i.e. with maximum rate and minimum multiplicative constant) for linear, hypocoercive evolution equations. Using a modal decomposition of the model allows to assemble a Lyapunov functional using Lyapunov matrix inequalities for each Fourier mode.
We shall illustrate the approach on the 1D Goldstein-Taylor model, a2-velocity transport-relaxation equation. On the torus the lowest ...[+]

82C40 ; 35B40 ; 35Q82 ; 35S05

Bookmarks Report an error