En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35Q35 31 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A one-dimensional model for suspension flows - Perrin, Charlotte (Auteur de la conférence) | CIRM H

Multi angle

We will present in this talk a mathematical model for a mixture composed by solid particles immersed in a viscous liquid. In a dense regime (high concentration of solid particles), the lubrication effects are predominant in the dynamics. Our goal is to study mathematically a minimal effective model, based on compressible Navier-Stokes equations, which take into account lubrication effects via a singular dissipation term. We will also consider the regime where the viscosity of the interstitial fluid tends to 0.[-]
We will present in this talk a mathematical model for a mixture composed by solid particles immersed in a viscous liquid. In a dense regime (high concentration of solid particles), the lubrication effects are predominant in the dynamics. Our goal is to study mathematically a minimal effective model, based on compressible Navier-Stokes equations, which take into account lubrication effects via a singular dissipation term. We will also consider ...[+]

35Q35 ; 35B25 ; 76T20 ; 90B20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider maximal regularity for the heat equation based on the endpoint function class BMO (the class of bounded mean oscillation). It is well known that BM O(Rn) is the endpoint class for solving the initial value problem for the incompressible Navier-Stokes equations and it is well suitable for solving such a problem ([3]) rather than the end-point homogeneous Besov spaces (cf. [1], [5]). First we recall basic properties of the function space BM O and show maximal regularity for the initial value problem of the Stokes equations ([4]). As an application, we consider the local well-posedness issue for the MHD equations with the Hall effect (cf. [2]). This talk is based on a joint work with Senjo Shimizu (Kyoto University).[-]
We consider maximal regularity for the heat equation based on the endpoint function class BMO (the class of bounded mean oscillation). It is well known that BM O(Rn) is the endpoint class for solving the initial value problem for the incompressible Navier-Stokes equations and it is well suitable for solving such a problem ([3]) rather than the end-point homogeneous Besov spaces (cf. [1], [5]). First we recall basic properties of the function ...[+]

35K55 ; 35K45 ; 35Q35 ; 35Q60 ; 42B37

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We construct a hierarchy of hybrid numerical methods for multi-scale kinetic equations based on moment realizability matrices, a concept introduced by Levermore, Morokoff and Nadiga. Following such a criterion, one can consider hybrid scheme where the hydrodynamic part is given either by the compressible Euler or Navier-Stokes equations, or even with more general models, such as the Burnett or super-Burnett systems.
PDE - numerical methods - Boltzmann equation - fluid models - hybrid methods[-]
We construct a hierarchy of hybrid numerical methods for multi-scale kinetic equations based on moment realizability matrices, a concept introduced by Levermore, Morokoff and Nadiga. Following such a criterion, one can consider hybrid scheme where the hydrodynamic part is given either by the compressible Euler or Navier-Stokes equations, or even with more general models, such as the Burnett or super-Burnett systems.
PDE - numerical methods - ...[+]

35Q35 ; 65N08 ; 65N22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped modes. Associated eigenvalues $\lambda = k^2$ are embedded in the essential spectrum $\mathbb{R}^+$. They can be computed as the real part of the complex spectrum of a non-self-adjoint eigenvalue problem, defined by using the so-called Perfectly Matched Layers (which consist in a complex dilation in the infinite direction) [1].
We show here that it is possible, by modifying in particular the parameters of the Perfectly Matched Layers, to define new complex spectra which include, in addition to trapped modes, frequencies where the potential $V$ is, in some sense, invisible to one incident wave.
Our approach allows to extend to higher dimension the results obtained in [2] on a 1D model problem.[-]
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped ...[+]

35Q35 ; 35J05 ; 65N30 ; 41A60 ; 47H10 ; 76Q05 ; 35B40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Dynamics of almost parallel vortex filaments - Banica, Valeria (Auteur de la conférence) | CIRM H

Multi angle

We consider the 1-D Schrödinger system with point vortex-type interactions that was derived by R. Klein, A. Majda and K. Damodaran and by V. Zakharov to modelize the dynamics of N nearly parallel vortex filaments in a 3-D incompressible fluid. We first prove a global in time result and display several classes of solutions. Then we consider the problem of collisions. In particular we establish rigorously the existence of a pair of almost parallel vortex filaments, with opposite circulation, colliding at some point in finite time. These results are joint works with E. Faou and E. Miot.[-]
We consider the 1-D Schrödinger system with point vortex-type interactions that was derived by R. Klein, A. Majda and K. Damodaran and by V. Zakharov to modelize the dynamics of N nearly parallel vortex filaments in a 3-D incompressible fluid. We first prove a global in time result and display several classes of solutions. Then we consider the problem of collisions. In particular we establish rigorously the existence of a pair of almost parallel ...[+]

35Q35 ; 76B47

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Following the seminal work by Benamou and Brenier on the time continuous formulation of the optimal transport problem, we show how optimal transport techniques can be used in various areas, ranging from "the reconstruction problem" cosmology to a problem of volatility calibration in finance.

65K10 ; 85A30 ; 85A40 ; 35Q35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The inhomogeneous incompressible Navier-Stokes equations that govern the evolution of viscous incompressible flows with non-constant density have received a lot of attention lately. In this talk, we shall mainly focus on the singular situation where the density is discontinuous, which is in particular relevant for describing the evolution of a mixture of two incompressible and non reacting fluids with constant density, or of a drop of liquid in vacuum. We shall highlight the places where tools in harmonic analysis play a key role, and present a few open problems.[-]
The inhomogeneous incompressible Navier-Stokes equations that govern the evolution of viscous incompressible flows with non-constant density have received a lot of attention lately. In this talk, we shall mainly focus on the singular situation where the density is discontinuous, which is in particular relevant for describing the evolution of a mixture of two incompressible and non reacting fluids with constant density, or of a drop of liquid in ...[+]

35Q30 ; 76D05 ; 35Q35 ; 76D03

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
​I will discuss recent developments concerning the non-uniqueness of distributional solutions to the Navier-Stokes equation.

35Q30 ; 76D05 ; 35Q35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Euler-Korteweg system corresponds to compressible, inviscid fluids with capillary forces. It can be used to model diffuse interfaces. Mathematically it reads as the Euler equations with a third order dispersive perturbation corresponding to the capillary tensor.

In dimension one there exists traveling waves with equal or different limit at infinity, respectively solitons and kinks. Their stability is ruled by a simple criterion a la Grillakis-Shatah-Strauss. This talk is devoted to the construction of multiple traveling waves, namely global solutions that converge as $t\rightarrow \infty $ to a profile made of several (stable) traveling waves. The waves constructed have both solitons and kinks. Multiple traveling waves play a peculiar role in the dynamics of dispersive equations, as they correspond to solutions that follow in some sense a purely nonlinear evolution.[-]
The Euler-Korteweg system corresponds to compressible, inviscid fluids with capillary forces. It can be used to model diffuse interfaces. Mathematically it reads as the Euler equations with a third order dispersive perturbation corresponding to the capillary tensor.

In dimension one there exists traveling waves with equal or different limit at infinity, respectively solitons and kinks. Their stability is ruled by a simple criterion a la ...[+]

35Q35 ; 35C07 ; 35Q53 ; 35Q31 ; 35B35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, I will present a recent study on traveling waves solutions to a 1D biphasic Navier-Stokes system coupling compressible and incompressible phases. With this original fluid equations, we intend to model congestion (or saturation) phenomena in heterogeneous flows (mixtures, collective motion, etc.). I will first exhibit explicit partially congested propagation fronts and show that these solutions can be approached by profiles which are solutions to a singular compressible Navier-Stokes system. The last part of the talk will be dedicated to the analysis of the stability of the approximate profiles. This is a joint work with Anne-Laure Dalibard.[-]
In this talk, I will present a recent study on traveling waves solutions to a 1D biphasic Navier-Stokes system coupling compressible and incompressible phases. With this original fluid equations, we intend to model congestion (or saturation) phenomena in heterogeneous flows (mixtures, collective motion, etc.). I will first exhibit explicit partially congested propagation fronts and show that these solutions can be approached by profiles which ...[+]

35Q35 ; 35L67

Sélection Signaler une erreur