En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Coinvariants, assembler K-theory, and scissors congruence

Bookmarks Report an error
Multi angle
Authors : Zakharevich, Inna (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : For a geometry $X$ (such as Euclidean, spherical, or hyperbolic) with isometry group $G$ the scissors congruence group $\mathcal{P}(X, G)$ is defined to be the free abelian group generated by polytopes in $X$, modulo the relation that for polytopes $P$ and $Q$ that intersect only on the boundary, $[P \cup Q]=[P]+[Q]$, and for $g \in G,[P]=[g \cdot P]$. This group classifies polytopes up to 'scissors congruence', i.e. cutting up into pieces, rearranging the pieces, and gluing them back together. With some basic group homology one can see that $\mathcal{P}(X, G) \cong H_0(G, \mathcal{P}(X, 1))$. Using combinatorial $K$-theory $\mathcal{P}(X, G)$ can be expressed as the $K_0$ of a spectrum $K(X, G)$. In this talk we will generalize this formula to show that, in fact, $K(X, G) \simeq K(X, 1)_{h G}$, and in fact more generally that this is true for any assembler with a $G$-action.This is joint work with Anna Marie Bohmann, Teena Gerhardt, Cary Malkiewich, and Mona Merling.

Keywords : K-theory; scissors congruence; homotopy orbits

MSC Codes :
19D55 - $K$-theory and homology; cyclic homology and cohomology, See also {18G60}
19E99 - None of the above but in this section
55N99 - None of the above but in this section

    Information on the Video

    Film maker : Petit, Jean
    Language : English
    Available date : 17/02/2023
    Conference Date : 24/01/2023
    Subseries : Research talks
    arXiv category : K-Theory and Homology
    Mathematical Area(s) : Topology
    Format : MP4 (.mp4) - HD
    Video Time : 01:01:54
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-01-24-zakharevich.mp4

Information on the Event

Event Title : Chromatic Homotopy, K-Theory and Functors / Homotopie chromatique, K-théorie et foncteurs
Event Organizers : Ausoni, Christian ; Hess Bellwald, Kathryn ; Powell, Geoffrey ; Touzé, Antoine ; Vespa, Christine
Dates : 23/01/2023 - 27/01/2023
Event Year : 2023
Event URL : https://conferences.cirm-math.fr/2339.html

Citation Data

DOI : 10.24350/CIRM.V.19998803
Cite this video as: Zakharevich, Inna (2023). Coinvariants, assembler K-theory, and scissors congruence. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19998803
URI : http://dx.doi.org/10.24350/CIRM.V.19998803

See Also

Bibliography



Imagette Video

Bookmarks Report an error