En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Combinatorics 237 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
A non-backtracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The non-backtracking matrix of a graph is indexed by its directed edges and can be used to count non-backtracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we study the largest eigenvalues of the non-backtracking matrix of the Erdos-Renyi random graph and of the Stochastic Block Model in the regime where the number of edges is proportional to the number of vertices. Our results confirm the "spectral redemption" conjecture that community detection can be made on the basis of the leading eigenvectors above the feasibility threshold.[-]
A non-backtracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The non-backtracking matrix of a graph is indexed by its directed edges and can be used to count non-backtracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we ...[+]

05C50 ; 05C80 ; 68T05 ; 91D30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Unramified graph covers of finite degree - Li, Winnie (Author of the conference) | CIRM H

Post-edited

Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density theorem.
This is a joint work with Hau-Wen Huang.[-]
Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density ...[+]

05C25 ; 05C50 ; 11R32 ; 11R44 ; 11R45

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We will cover some of the more important results from commutative and noncommutative algebra as far as applications to automatic sequences, pattern avoidance, and related areas. Well give an overview of some applications of these areas to the study of automatic and regular sequences and combinatorics on words.

11B85 ; 68Q45 ; 68R15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Given a finite group $G$ and a set $A$ of generators, the diameter diam$(\Gamma(G, A))$ of the Cayley graph $\Gamma(G, A)$ is the smallest $\ell$ such that every element of $G$ can be expressed as a word of length at most $\ell$ in $A \cup A^{-1}$. We are concerned with bounding diam$(G) := max_A$ diam$(\Gamma(G, A))$.
It has long been conjectured that the diameter of the symmetric group of degree $n$ is polynomially bounded in $n$. In 2011, Helfgott and Seress gave a quasipolynomial bound, namely, $O\left (e^{(log n)^{4+\epsilon}}\right )$. We will discuss a recent, much simplified version of the proof.[-]
Given a finite group $G$ and a set $A$ of generators, the diameter diam$(\Gamma(G, A))$ of the Cayley graph $\Gamma(G, A)$ is the smallest $\ell$ such that every element of $G$ can be expressed as a word of length at most $\ell$ in $A \cup A^{-1}$. We are concerned with bounding diam$(G) := max_A$ diam$(\Gamma(G, A))$.
It has long been conjectured that the diameter of the symmetric group of degree $n$ is polynomially bounded in $n$. In 2011, ...[+]

20B05 ; 05C25 ; 20B30 ; 20F69 ; 20D60

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
After Fourier series, the quantum Hopf-Burgers equation $v_t +vv_x = 0$ with periodic boundary conditions is equivalent to a system of coupled quantum harmonic oscillators, which may be prepared in Glauber's coherent states as initial conditions. Sending the displacement of each oscillator to infinity at the same rate, we (1) confirm and (2) determine corrections to the quantum-classical correspondence principle. After diagonalizing the Hamiltonian with Schur polynomials, this is equivalent to proving (1) the concentration of profiles of Young diagrams around a limit shape and (2) their global Gaussian fluctuations for Schur measures with symbol $v : T \to R$ on the unit circle $T$. We identify the emergent objects with the push-forward along $v$ of (1) the uniform measure on $T$ and (2) $H^{1/2}$ noise on $T$. Our proofs exploit the integrability of the model as described by Nazarov-Sklyanin (2013). As time permits, we discuss structural connections to the theory of the topological recursion.[-]
After Fourier series, the quantum Hopf-Burgers equation $v_t +vv_x = 0$ with periodic boundary conditions is equivalent to a system of coupled quantum harmonic oscillators, which may be prepared in Glauber's coherent states as initial conditions. Sending the displacement of each oscillator to infinity at the same rate, we (1) confirm and (2) determine corrections to the quantum-classical correspondence principle. After diagonalizing the ...[+]

05E10 ; 20G43 ; 37K10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Palindromes patterns - Brlek, Srecko (Author of the conference) | CIRM H

Multi angle

The study of palindromes and their generalizations in a word has gained a lot of interest in the last 20 years, motivated by applications in physics, biology, discrete geometry, to name only a few. Using Sebastien Ferenczi as an example, we illustrate the computation of its palindromic complexity and its relation with the usual factor complexity, via an identity attributed to Brlek and Reutenauer involving also the palindromic defect. Periodic infinite words as well as the family of words with language closed by reversal also satisfy the identity. The identity remains valid when palindromic is replaced by $\sigma$-palindromic, and we also discuss some other patterns.[-]
The study of palindromes and their generalizations in a word has gained a lot of interest in the last 20 years, motivated by applications in physics, biology, discrete geometry, to name only a few. Using Sebastien Ferenczi as an example, we illustrate the computation of its palindromic complexity and its relation with the usual factor complexity, via an identity attributed to Brlek and Reutenauer involving also the palindromic defect. Periodic ...[+]

68Q45 ; 68R15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Le problème Graph Motif - Partie 1 - Fertin, Guillaume (Author of the conference) | CIRM H

Post-edited

Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des réseaux biologiques, comme par exemple des réseaux d'interaction de protéines ou des réseaux métaboliques. Graph Motif a fait depuis l'objet d'une attention particulière qui se traduit par un nombre relativement élevé de publications, essentiellement orientées autour de sa complexité algorithmique.
Je présenterai un certain nombre de résultats algorithmiques concernant le problème Graph Motif, en particulier des résultats de FPT (Fixed-Parameter Tractability), ainsi que des bornes inférieures de complexité algorithmique.
Ceci m'amènera à détailler diverses techniques de preuves dont certaines sont plutôt originales, et qui seront je l'espère d'intérêt pour le public.[-]
Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des ...[+]

05C15 ; 05C85 ; 05C90 ; 68Q17 ; 68Q25 ; 68R10 ; 92C42 ; 92D20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random cubic planar graphs revisited - Rué, Juanjo (Author of the conference) | CIRM H

Multi angle

We analyze random labelled cubic planar graphs according to the uniform distribution. This model was analyzed first by Bodirsky et al. in a paper from 2007. Here we revisit and extend their work. The motivation for this revision is twofold. First, some proofs where incomplete with respect to the singularity analysis and we provide full proofs. Secondly, we obtain new results that considerably strengthen those known before. For instance, we show that the number of triangles in random cubic planar graphs is asymptotically normal with linear expectation and variance, while formerly it was only known that it is linear with high probability.
This is based on a joint work with Marc Noy (UPC) and Clément Requilé (FU Berlin - BMS).[-]
We analyze random labelled cubic planar graphs according to the uniform distribution. This model was analyzed first by Bodirsky et al. in a paper from 2007. Here we revisit and extend their work. The motivation for this revision is twofold. First, some proofs where incomplete with respect to the singularity analysis and we provide full proofs. Secondly, we obtain new results that considerably strengthen those known before. For instance, we show ...[+]

05C80 ; 05C10 ; 05A16

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Self-interacting walks and uniform spanning forests - Peres, Yuval (Author of the conference) | CIRM H

Post-edited

In the first half of the talk, I will survey results and open problems on transience of self-interacting martingales. In particular, I will describe joint works with S. Popov, P. Sousi, R. Eldan and F. Nazarov on the tradeoff between the ambient dimension and the number of different step distributions needed to obtain a recurrent process. In the second, unrelated, half of the talk, I will present joint work with Tom Hutchcroft, showing that the component structure of the uniform spanning forest in $\mathbb{Z}^d$ changes every dimension for $d > 8$. This sharpens an earlier result of Benjamini, Kesten, Schramm and the speaker (Annals Math 2004), where we established a phase transition every four dimensions. The proofs are based on a the connection to loop-erased random walks.[-]
In the first half of the talk, I will survey results and open problems on transience of self-interacting martingales. In particular, I will describe joint works with S. Popov, P. Sousi, R. Eldan and F. Nazarov on the tradeoff between the ambient dimension and the number of different step distributions needed to obtain a recurrent process. In the second, unrelated, half of the talk, I will present joint work with Tom Hutchcroft, showing that the ...[+]

05C05 ; 05C80 ; 60G50 ; 60J10 ; 60K35 ; 82B43

Bookmarks Report an error