En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

ALEA 41 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Les processus de fragmentation sont des modèles aléatoires pour décrire l'évolution d'objets (particules, masses) sujets à des fragmentations successives au cours du temps. L'étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l'objet de nombreuses recherches. Ceci s'explique à la fois par de multiples motivations (le champs d'applications est vaste : biologie et génétique des populations, formation de planètes, polymérisation, aérosols, industrie minière, informatique, etc.) et par la mise en place de modèles mathématiques riches et liés à d'autres domaines bien développés en Probabilités, comme les marches aléatoires branchantes, les processus de Lévy et les arbres aléatoires. L'objet de ce mini-cours est de présenter les processus de fragmentation auto-similaires, tels qu'introduits par Bertoin au début des années 2000s. Ce sont des processus markoviens, dont la dynamique est caractérisée par une propriété de branchement (différents objets évoluent indépendamment) et une propriété d'auto-similarité (un objet se fragmente à un taux proportionnel à une certaine puissance fixée de sa masse). Nous discuterons la construction de ces processus (qui incluent des modèles avec fragmentations spontanées, plus délicats à construire) et ferons un tour d'horizon de leurs principales propriétés.[-]
Les processus de fragmentation sont des modèles aléatoires pour décrire l'évolution d'objets (particules, masses) sujets à des fragmentations successives au cours du temps. L'étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l'objet de nombreuses recherches. Ceci s'explique à la fois par de multiples motivations (le champs d'applications est vaste : biologie et génétique des populations, formation de planètes, ...[+]

60G18 ; 60J25 ; 60J85

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Les processus de fragmentation sont des modèles aléatoires pour décrire l'évolution d'objets (particules, masses) sujets à des fragmentations successives au cours du temps. L'étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l'objet de nombreuses recherches. Ceci s'explique à la fois par de multiples motivations (le champs d'applications est vaste : biologie et génétique des populations, formation de planètes, polymérisation, aérosols, industrie minière, informatique, etc.) et par la mise en place de modèles mathématiques riches et liés à d'autres domaines bien développés en Probabilités, comme les marches aléatoires branchantes, les processus de Lévy et les arbres aléatoires. L'objet de ce mini-cours est de présenter les processus de fragmentation auto-similaires, tels qu'introduits par Bertoin au début des années 2000s. Ce sont des processus markoviens, dont la dynamique est caractérisée par une propriété de branchement (différents objets évoluent indépendamment) et une propriété d'auto-similarité (un objet se fragmente à un taux proportionnel à une certaine puissance fixée de sa masse). Nous discuterons la construction de ces processus (qui incluent des modèles avec fragmentations spontanées, plus délicats à construire) et ferons un tour d'horizon de leurs principales propriétés.[-]
Les processus de fragmentation sont des modèles aléatoires pour décrire l'évolution d'objets (particules, masses) sujets à des fragmentations successives au cours du temps. L'étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l'objet de nombreuses recherches. Ceci s'explique à la fois par de multiples motivations (le champs d'applications est vaste : biologie et génétique des populations, formation de planètes, ...[+]

60G18 ; 60J25 ; 60J85

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Les chaînes de Markov à mémoire de longueur variable constituent une classe de sources probabilistes. Il sera question dans cet exposé d'existence et unicité de mesure invariante pour une collection d'exemples de chaînes. Nous nous intéresserons également au comportement asymptotique d'une marche aléatoire dont les longueurs de sauts ne sont pas forcément intégrables. Les lois de sauts dépendent partiellement du passé de la trajectoire. Plus précisément, la probabilité de monter ou de descendre dépend du temps passé dans la direction dans laquelle le marcheur est en train d'avancer. Un critère de récurrence/transience s'exprimant en fonction des paramètres du modèle sera énoncé. Suivront plusieurs exemples illustrant le caractère instable du type de la marche lorsqu'on perturbe légèrement les paramètres.
Les travaux décrits dans cet exposé ont été faits en collaboration avec B. Chauvin, F. Paccaut et N. Pouyanne ou B. de Loynes, A. Le Ny et Y. Offret.[-]
Les chaînes de Markov à mémoire de longueur variable constituent une classe de sources probabilistes. Il sera question dans cet exposé d'existence et unicité de mesure invariante pour une collection d'exemples de chaînes. Nous nous intéresserons également au comportement asymptotique d'une marche aléatoire dont les longueurs de sauts ne sont pas forcément intégrables. Les lois de sauts dépendent partiellement du passé de la trajectoire. Plus ...[+]

60J10 ; 60J27 ; 60F05 ; 60K15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Le problème Graph Motif - Partie 1 - Fertin, Guillaume (Auteur de la conférence) | CIRM H

Post-edited

Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des réseaux biologiques, comme par exemple des réseaux d'interaction de protéines ou des réseaux métaboliques. Graph Motif a fait depuis l'objet d'une attention particulière qui se traduit par un nombre relativement élevé de publications, essentiellement orientées autour de sa complexité algorithmique.
Je présenterai un certain nombre de résultats algorithmiques concernant le problème Graph Motif, en particulier des résultats de FPT (Fixed-Parameter Tractability), ainsi que des bornes inférieures de complexité algorithmique.
Ceci m'amènera à détailler diverses techniques de preuves dont certaines sont plutôt originales, et qui seront je l'espère d'intérêt pour le public.[-]
Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des ...[+]

05C15 ; 05C85 ; 05C90 ; 68Q17 ; 68Q25 ; 68R10 ; 92C42 ; 92D20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Le problème Graph Motif - Partie 2 - Fertin, Guillaume (Auteur de la conférence) | CIRM H

Multi angle

Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des réseaux biologiques, comme par exemple des réseaux d'interaction de protéines ou des réseaux métaboliques. Graph Motif a fait depuis l'objet d'une attention particulière qui se traduit par un nombre relativement élevé de publications, essentiellement orientées autour de sa complexité algorithmique.
Je présenterai un certain nombre de résultats algorithmiques concernant le problème Graph Motif, en particulier des résultats de FPT (Fixed-Parameter Tractability), ainsi que des bornes inférieures de complexité algorithmique.
Ceci m'amènera à détailler diverses techniques de preuves dont certaines sont plutôt originales, et qui seront je l'espère d'intérêt pour le public.[-]
Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des ...[+]

05C15 ; 05C85 ; 05C90 ; 68Q17 ; 68Q25 ; 68R10 ; 92C42 ; 92D20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Sur les mesures stationnaires des VLMC - Pouyanne, Nicolas (Auteur de la conférence) | CIRM H

Multi angle

Les chaînes de Markov à mémoire de longueur variable sont des sources probabilistes pour lesquelles la production d'une lettre dépend d'un passé fini, mais dont la longueur dépend du temps est n'est pas bornée. Elles sont définies à partir d'un arbre T qui est un sous-arbre de l'arbre de tous les mots. Contrairement aux chaînes de Markov d'ordre fini standard, ces sources n'admettent pas toujours de mesure de probabilité stationnaire, ou peuvent en admettre plusieurs. La forme de l'arbre T joue un rôle essentiel dans cette affaire. On montrera quelques outils adaptés à la question et, sous certaines hypothèses, on donnera une CNS d'existence et d'uniciteé d'une telle mesure de probabilité.
Travail en collaboration avec P. Cénac, B. Chauvin et F. Paccaut.[-]
Les chaînes de Markov à mémoire de longueur variable sont des sources probabilistes pour lesquelles la production d'une lettre dépend d'un passé fini, mais dont la longueur dépend du temps est n'est pas bornée. Elles sont définies à partir d'un arbre T qui est un sous-arbre de l'arbre de tous les mots. Contrairement aux chaînes de Markov d'ordre fini standard, ces sources n'admettent pas toujours de mesure de probabilité stationnaire, ou peuvent ...[+]

60J10 ; 60G10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Graph searching, a mechanism to traverse a graph visiting one vertex at a time in a specific manner, is a powerful tool used to extract structure from various families of graphs. In this talk, we focus on two graph searches: Lexicographic Breadth First Search (LBFS), and Lexicographic Depth First Search (LDFS).
Many classes of graphs have a vertex ordering characterisation, and we review how graph searching is used to produce efficiently such vertex orderings.
These orderings expose structure that we exploit to develop efficient linear and near-linear time algorithms for some NP-hard problems (independent set, colouring, Hamiltonicity for instance) on some special classes of graphs such as cocomparability graphs.
In particular, we will prove fixed point type theorems for LexBFS, and then focus on a LexDFS-based framework to lift algorithms from interval graphs to cocomparability graphs. Then I will present the relationships between graph searches, graph geometric convexities and antimatroids. These relationships are for to be completely understood and I will pose some hard conjectures and some interesting problems to consider.
To finish I will present some recent results about Robinsonian matrices by M. Laurent and M. Seminaroti and their relationships with graph searches. This yields a new area of research to investigate.[-]
Graph searching, a mechanism to traverse a graph visiting one vertex at a time in a specific manner, is a powerful tool used to extract structure from various families of graphs. In this talk, we focus on two graph searches: Lexicographic Breadth First Search (LBFS), and Lexicographic Depth First Search (LDFS).
Many classes of graphs have a vertex ordering characterisation, and we review how graph searching is used to produce efficiently such ...[+]

05C85 ; 68R10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The course presents the mathematical software SageMath and most specifically its usage for research in combinatorics. We will focus on families of combinatorial objects, especially related to the Tamari lattice, and their implementation in the context of object oriented programming.
https://www.lri.fr/~pons/

05-00 ; 05E99 ; 05A99

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random walks on simplicial complexes - Tran, Viet Chi (Auteur de la conférence) | CIRM H

Multi angle

Motivated by the discovery of hard-to-find social networks in epidemiology, we consider the question of exploring the topology of random structures (such as a random graph G) by random walks. The usual random walk jumps from a vertex of G to a neighboring vertex, with providing information on the connected components of the graph G. The number of these connected components is the Betti number $beta_{0}$. To gather further information on the higher Betti numbers that describe the topology of the graph, we can consider the simplicial complex C associated to the graph G: a k-simplex (edge for k = 1, triangle for k = 2, tetrahedron for k = 3 etc.) belongs to C if all the lower (k-1)-simplices that constitute it also belong to C. For example, a triangle belongs to C if its three edges are in the graph G. Several random walks have already been proposed recently to explore these structures. We introduce a new random walk, whose generator is related to a Laplacian of higher order of the graph and to the Betti number betak. A rescaling of the walk for k = 2 (cycle-valued random walk), and on regular triangulation of the torus, is also detailed. We embed the space of chains into spaces of currents to establish the limiting theorem.
Joint work with T. Bonis, L. Decreusefond and Z. Zhang.
https://perso.math.u-pem.fr/tran.viet-chi/[-]
Motivated by the discovery of hard-to-find social networks in epidemiology, we consider the question of exploring the topology of random structures (such as a random graph G) by random walks. The usual random walk jumps from a vertex of G to a neighboring vertex, with providing information on the connected components of the graph G. The number of these connected components is the Betti number $beta_{0}$. To gather further information on the ...[+]

60D05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The course presents the mathematical software SageMath and most specifically its usage for research in combinatorics. We will focus on families of combinatorial objects, especially related to the Tamari lattice, and their implementation in the context of object oriented programming.
https://www.lri.fr/~pons/

05-00 ; 05E99 ; 05A99

Sélection Signaler une erreur