En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35Q35 31 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A one-dimensional model for suspension flows - Perrin, Charlotte (Author of the conference) | CIRM H

Multi angle

We will present in this talk a mathematical model for a mixture composed by solid particles immersed in a viscous liquid. In a dense regime (high concentration of solid particles), the lubrication effects are predominant in the dynamics. Our goal is to study mathematically a minimal effective model, based on compressible Navier-Stokes equations, which take into account lubrication effects via a singular dissipation term. We will also consider the regime where the viscosity of the interstitial fluid tends to 0.[-]
We will present in this talk a mathematical model for a mixture composed by solid particles immersed in a viscous liquid. In a dense regime (high concentration of solid particles), the lubrication effects are predominant in the dynamics. Our goal is to study mathematically a minimal effective model, based on compressible Navier-Stokes equations, which take into account lubrication effects via a singular dissipation term. We will also consider ...[+]

35Q35 ; 35B25 ; 76T20 ; 90B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider maximal regularity for the heat equation based on the endpoint function class BMO (the class of bounded mean oscillation). It is well known that BM O(Rn) is the endpoint class for solving the initial value problem for the incompressible Navier-Stokes equations and it is well suitable for solving such a problem ([3]) rather than the end-point homogeneous Besov spaces (cf. [1], [5]). First we recall basic properties of the function space BM O and show maximal regularity for the initial value problem of the Stokes equations ([4]). As an application, we consider the local well-posedness issue for the MHD equations with the Hall effect (cf. [2]). This talk is based on a joint work with Senjo Shimizu (Kyoto University).[-]
We consider maximal regularity for the heat equation based on the endpoint function class BMO (the class of bounded mean oscillation). It is well known that BM O(Rn) is the endpoint class for solving the initial value problem for the incompressible Navier-Stokes equations and it is well suitable for solving such a problem ([3]) rather than the end-point homogeneous Besov spaces (cf. [1], [5]). First we recall basic properties of the function ...[+]

35K55 ; 35K45 ; 35Q35 ; 35Q60 ; 42B37

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped modes. Associated eigenvalues $\lambda = k^2$ are embedded in the essential spectrum $\mathbb{R}^+$. They can be computed as the real part of the complex spectrum of a non-self-adjoint eigenvalue problem, defined by using the so-called Perfectly Matched Layers (which consist in a complex dilation in the infinite direction) [1].
We show here that it is possible, by modifying in particular the parameters of the Perfectly Matched Layers, to define new complex spectra which include, in addition to trapped modes, frequencies where the potential $V$ is, in some sense, invisible to one incident wave.
Our approach allows to extend to higher dimension the results obtained in [2] on a 1D model problem.[-]
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped ...[+]

35Q35 ; 35J05 ; 65N30 ; 41A60 ; 47H10 ; 76Q05 ; 35B40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond [1, 3]. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we analyze the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density of particles with a moving point charge, characterized by a Dirac mass in the phase-space.[-]
We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond [1, 3]. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we analyze the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density of particles with a moving point charge, characterized by ...[+]

76X05 ; 82C21 ; 35Q35 ; 35Q83 ; 35Q60 ; 82D10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
​I will discuss recent developments concerning the non-uniqueness of distributional solutions to the Navier-Stokes equation.

35Q30 ; 76D05 ; 35Q35

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Euler-Korteweg system corresponds to compressible, inviscid fluids with capillary forces. It can be used to model diffuse interfaces. Mathematically it reads as the Euler equations with a third order dispersive perturbation corresponding to the capillary tensor.

In dimension one there exists traveling waves with equal or different limit at infinity, respectively solitons and kinks. Their stability is ruled by a simple criterion a la Grillakis-Shatah-Strauss. This talk is devoted to the construction of multiple traveling waves, namely global solutions that converge as $t\rightarrow \infty $ to a profile made of several (stable) traveling waves. The waves constructed have both solitons and kinks. Multiple traveling waves play a peculiar role in the dynamics of dispersive equations, as they correspond to solutions that follow in some sense a purely nonlinear evolution.[-]
The Euler-Korteweg system corresponds to compressible, inviscid fluids with capillary forces. It can be used to model diffuse interfaces. Mathematically it reads as the Euler equations with a third order dispersive perturbation corresponding to the capillary tensor.

In dimension one there exists traveling waves with equal or different limit at infinity, respectively solitons and kinks. Their stability is ruled by a simple criterion a la ...[+]

35Q35 ; 35C07 ; 35Q53 ; 35Q31 ; 35B35

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, I will present a recent study on traveling waves solutions to a 1D biphasic Navier-Stokes system coupling compressible and incompressible phases. With this original fluid equations, we intend to model congestion (or saturation) phenomena in heterogeneous flows (mixtures, collective motion, etc.). I will first exhibit explicit partially congested propagation fronts and show that these solutions can be approached by profiles which are solutions to a singular compressible Navier-Stokes system. The last part of the talk will be dedicated to the analysis of the stability of the approximate profiles. This is a joint work with Anne-Laure Dalibard.[-]
In this talk, I will present a recent study on traveling waves solutions to a 1D biphasic Navier-Stokes system coupling compressible and incompressible phases. With this original fluid equations, we intend to model congestion (or saturation) phenomena in heterogeneous flows (mixtures, collective motion, etc.). I will first exhibit explicit partially congested propagation fronts and show that these solutions can be approached by profiles which ...[+]

35Q35 ; 35L67

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The purpose of this talk is to present two 1d congestion models: a soft congestion model with a singular pressure, and a hard congestion model in which the dynamic is different in the congested and non-congested zone (incompressible vs. compressible dynamic). The hard congested model is the limit of the soft one as the parameter within the singular presure vanishes.
For each model, we prove the existence of traveling waves, and we study their stability. This is a joint work with Charlotte Perrin.[-]
The purpose of this talk is to present two 1d congestion models: a soft congestion model with a singular pressure, and a hard congestion model in which the dynamic is different in the congested and non-congested zone (incompressible vs. compressible dynamic). The hard congested model is the limit of the soft one as the parameter within the singular presure vanishes.
For each model, we prove the existence of traveling waves, and we study their ...[+]

35B35 ; 35Q35 ; 35R35

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Efficient numerical methods for particle systems (part 2) - Jin, Shi (Author of the conference) | CIRM H

Virtualconference

We will first outline the asymptotic-transition from quantum to classical, to kinetic and then the hydrodynamic equations, and then show how such asymptotics can guide the design and analysis of the so-called asymptotic-preserving schemes that offer efficient multiscale computations between different scales. Recent random batch methods for particle systems that are valid also for the mean-field regimes will be presented.

82C10 ; 82C40 ; 70-08 ; 35Q35 ; 65Mxx

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, after reviewing the work on global well-posedness of the Boltzmann equation without angular cutoff with algebraic decay tails, we will present a recent work on the global weighted $L^{\infty}$-solutions to the Boltzmann equation without angular cutoff in the regime close to equilibrium. A De Giorgi type argument, well developed for diffusion equations, is crafted in this kinetic context with the help of the averaging lemma. More specifically, we use a strong averaging lemma to obtain suitable $L^{p}$ estimates for level-set functions. These estimates are crucial for constructing an appropriate energy functional to carry out the De Giorgi argument. Then we extend local solutions to global by using the spectral gap of the linearized Boltzmann operator with the convergence to the equilibrium state obtained as a byproduct. This result fill in the gap of well-posedness theory for the Boltzmann equation without angular cutoff in the $L^{\infty}$ framework. The talk is based on the joint works with Ricardo Alonso, Yoshinori Morimoto and Weiran Sun.[-]
In this talk, after reviewing the work on global well-posedness of the Boltzmann equation without angular cutoff with algebraic decay tails, we will present a recent work on the global weighted $L^{\infty}$-solutions to the Boltzmann equation without angular cutoff in the regime close to equilibrium. A De Giorgi type argument, well developed for diffusion equations, is crafted in this kinetic context with the help of the averaging lemma. More ...[+]

76P05 ; 35Q35 ; 47H20

Bookmarks Report an error