En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 53C55 13 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Hermitian complex spaces are a large class of singular spaces that include for instance projective varieties endowed with the metric induced by the Fubini-Study metric. Many of the problems raised by Cheeger, Goresky and MacPherson in the case of complex projective varieties admit a natural extension also in this setting. The aim of this talk is to report about some recent results concerning the Hodge-Kodaira Laplacian acting on the canonical bundle of a compact Hermitian complex space. More precisely let $(X,h)$ be a compact and irreducible Hermitian complex space of complex dimension $m$. Consider the Dolbeault operator $\bar{\partial}_{m,0}$ : $L^2 \Omega^{m,0}(reg(X),h) \to L^2\Omega^{m,1}(reg(X),h)$ with domain $\Omega{_c^{m,0}}(reg(X))$ and let $\bar{\mathfrak{d}}_{m,0} : L^2 \Omega^{m,0}(reg(X),h)\to L^2\Omega^{m,1}(reg(X),h)$ be any of its closed extension. Now consider the associated Hodge-Kodaira Laplacian $\bar{\mathfrak{d}^*} \circ\bar{\mathfrak{d}}_{m,0}$ : $L^2 \Omega^{m,0}(reg(X),h)\to L^2\Omega^{m,0}(reg(X),h)$. We will show that the latter operator is discrete and we will provide an estimate for the growth of its eigenvalues. Finally we will prove some discreteness results for the Hodge-Dolbeault operator in the setting of both isolated singularities and complex projective surfaces (without assumptions on the singularities in the latter case).[-]
Hermitian complex spaces are a large class of singular spaces that include for instance projective varieties endowed with the metric induced by the Fubini-Study metric. Many of the problems raised by Cheeger, Goresky and MacPherson in the case of complex projective varieties admit a natural extension also in this setting. The aim of this talk is to report about some recent results concerning the Hodge-Kodaira Laplacian acting on the canonical ...[+]

58J50 ; 53C55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
By a gluing construction, we produce steady Kähler-Ricci solitons on equivariant crepant resolutions of $\mathbb{C}^n/G$, where $G$ is a finite subgroup of $SU(n)$, generalizing Cao's construction of such a soliton on a resolution of $\mathbb{C}^n/\mathbb{Z}_n$.
This is joint work with Olivier Biquard.

53C25 ; 53C44 ; 53C55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
I will discuss some recent developments in the direction of the Yau-Tian-Donaldson conjecture, which relates the existence of constant scalar curvature Kähler metrics to the algebro-geometric notion of $K$-stability. The emphasis will be put on the use of pluripotential theory and the interpretation of $K$-stability in terms of non-Archimedean geometry.

32Q20 ; 32Q26 ; 32Q25 ; 32P05 ; 53C55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A famous conjecture of Kobayashi from the 1970s asserts that a generic algebraic hypersurface of sufficiently large degree $d\geq d_n$ in the complex projective space of dimension $n+1$ is hyperbolic. Yum-Tong Siu introduced several fundamental ideas that led recently to a proof of the conjecture. In 2016, Damian Brotbek gave a new geometric argument based on the use of Wronskian operators and on an analysis of the geometry of Semple jet bundles. Shortly afterwards, Ya Deng obtained effective degree bounds by means of a refined technique. Our goal here will be to explain a drastically simpler proof that yields an improved (though still non optimal) degree bound, e.g. $d_n=[(en)^{2n+2}/5]$. We will also present a more general approach that could possibly lead to optimal bounds.[-]
A famous conjecture of Kobayashi from the 1970s asserts that a generic algebraic hypersurface of sufficiently large degree $d\geq d_n$ in the complex projective space of dimension $n+1$ is hyperbolic. Yum-Tong Siu introduced several fundamental ideas that led recently to a proof of the conjecture. In 2016, Damian Brotbek gave a new geometric argument based on the use of Wronskian operators and on an analysis of the geometry of Semple jet ...[+]

32Q45 ; 32L10 ; 53C55 ; 14J40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will review a conjecture (joint work with Davide Gaiotto and Greg Moore) which gives a description of the hyperkähler metric on the moduli space of Higgs bundles, and recent joint work with David Dumas which has given evidence that the conjecture is true in the case of $SL(2)$-Higgs bundles.

32Q20 ; 53C07 ; 53C55 ; 53C26 ; 81T13 ; 81T60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Algebraicity of the metric tangent cones - Wang, Xiaowei (Auteur de la Conférence) | CIRM H

Post-edited

We proved that any K-semistable log Fano cone admits a special degeneration to a uniquely determined K-polystable log Fano cone. This confirms a conjecture of Donaldson-Sun stating that the metric tangent cone of any close point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. This is a joint work with Chi Li and Chenyang Xu.

14J45 ; 32Q15 ; 32Q20 ; 53C55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Moduli of algebraic varieties - Dervan, Ruadhai (Auteur de la Conférence) | CIRM H

Multi angle

One of the central problems in algebraic geometry is to form a reasonable (e.g. Hausdorff) moduli space of smooth polarised varieties. I will show how one can solve this problem using canonical Kähler metrics. This is joint work with Philipp Naumann.

14D20 ; 32Q15 ; 53C55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We develop apriori estimates for scalar curvature type equations on compact Kähler manifolds. As an application, we show that K-energy being proper with respect to $L^1$ geodesic distance implies the existence of constant scalar curvature Kähler metrics. This is joint work with Xiuxiong Chen.

53C55 ; 32Q20 ; 32Q15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Wang et Zhu ont caractérisé l'existence de métriques de Kähler-Einstein sur les variétés toriques Fano en termes du barycentre du polytope associé. L'objectif de cet exposé est de présenter un résultat similaire pour les compactifications $G \times G$-équivariantes Fano d'un groupe réductif $G$. Je présenterai le polytope moment associé à une telle variété et comment le barycentre de ce polytope par rapport à la mesure de Duistermaat-Heckman est lié à l'existence de métriques de Kähler-Einstein. La condition nécessaire et suffisante d'existence de métriques de Kähler-Einstein ainsi obtenue est vérifiable en pratique et donne de nouveaux exemples de variétés de Kähler-Einstein Fano (par exemple la compactification magnifique du groupe semisimple adjoint PSL$(3, \mathbb{C})$).[-]
Wang et Zhu ont caractérisé l'existence de métriques de Kähler-Einstein sur les variétés toriques Fano en termes du barycentre du polytope associé. L'objectif de cet exposé est de présenter un résultat similaire pour les compactifications $G \times G$-équivariantes Fano d'un groupe réductif $G$. Je présenterai le polytope moment associé à une telle variété et comment le barycentre de ce polytope par rapport à la mesure de Duistermaat-Heckman est ...[+]

32Q20 ; 14J45 ; 53C55 ; 32Q10 ; 14M27

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk I will discuss the existence of complete extremal metrics on the complement of simple normal crossings divisors in compact Kähler manifolds, and stability of pairs, in the toric case. Using constructions of Legendre and Apostolov-Calderbank-Gauduchon, we completely characterize when this holds for Hirzebruch surfaces. In particular, our results show that relative stability of a pair and the existence of extremal Poincaré type/cusp metrics do not coincide. However, stability is equivalent to the existence of a complete extremal metric on the complement of the divisor in our examples. It is the Poincaré type condition on the asymptotics of the extremal metric that fails in general.
This is joint work with Vestislav Apostolov and Hugues Auvray.[-]
In this talk I will discuss the existence of complete extremal metrics on the complement of simple normal crossings divisors in compact Kähler manifolds, and stability of pairs, in the toric case. Using constructions of Legendre and Apostolov-Calderbank-Gauduchon, we completely characterize when this holds for Hirzebruch surfaces. In particular, our results show that relative stability of a pair and the existence of extremal Poincaré type/cusp ...[+]

53C55 ; 53C25 ; 30F45

Sélection Signaler une erreur