En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Chapuy, Guillaume 12 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Several operations of combinatorial surgery can be used to relate maps of a given genus g to maps of genus g' is smaller than g. One of them is the Tutte/Lehman-Walsh decomposition, but more advanced constructions exist in the combinatorial toolbox, based on the Marcus-Schaeffer/ Miermont or the trisection bijections.
At the asymptotic level, these constructions lead to surprising relations between the enumeration of maps of genus g, and the genus 0 Brownian map. I will talk about some fascinating identities and (open) problems resulting from these connections, related to Voronoi diagrams, 'W-functionals', and properties of the ISE measure. Although the motivation comes from 'higher genus', these questions deal with the usual Brownian map as everyone likes it.
This is not very new material, and a (mostly French) part of the audience may have heard these stories one million times. But still I hope it will be interesting to advertise them here. In particular, I do not know if recent 'Liouville-based' approaches have anything to say about all this.[-]
Several operations of combinatorial surgery can be used to relate maps of a given genus g to maps of genus g' is smaller than g. One of them is the Tutte/Lehman-Walsh decomposition, but more advanced constructions exist in the combinatorial toolbox, based on the Marcus-Schaeffer/ Miermont or the trisection bijections.
At the asymptotic level, these constructions lead to surprising relations between the enumeration of maps of genus g, and the ...[+]

05A15 ; 05A16 ; 05C80 ; 60J80 ; 60J85

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will announce the proof, with Thomas Budzinski and Baptiste Louf, of the following fact: a uniformly random triangulation of size n whose genus grows linearly with $n$, has diameter $O(log(n))$ with high probability. The proof is based on isoperimetric inequalities built from enumerative estimates strongly built on the (celebrated) previous work of my two coauthors.
But before this, I will try to review a little bit the questions surrounding random maps on surfaces, in either fixed genus or high genus.[-]
I will announce the proof, with Thomas Budzinski and Baptiste Louf, of the following fact: a uniformly random triangulation of size n whose genus grows linearly with $n$, has diameter $O(log(n))$ with high probability. The proof is based on isoperimetric inequalities built from enumerative estimates strongly built on the (celebrated) previous work of my two coauthors.
But before this, I will try to review a little bit the questions surrounding ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
- Normalized characters of the symmetric groups,
- Kerov polynomials and Kerov positivity conjecture,
- Stanley character polynomials and multirectangular coordinates of Young diagrams,
- Stanley character formula and maps,
- Jack characters
- characterization, partial results.

05E10 ; 05E16 ; 20C30 ; 05A15 ; 05C10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
- Normalized characters of the symmetric groups,
- Kerov polynomials and Kerov positivity conjecture,
- Stanley character polynomials and multirectangular coordinates of Young diagrams,
- Stanley character formula and maps,
- Jack characters
- characterization, partial results.

05A15 ; 05D05 ; 46L54 ; 43A65 ; 20E22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
- Normalized characters of the symmetric groups,
- Kerov polynomials and Kerov positivity conjecture,
- Stanley character polynomials and multirectangular coordinates of Young diagrams,
- Stanley character formula and maps,
- Jack characters
- characterization, partial results.

05E10 ; 05E05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
After Fourier series, the quantum Hopf-Burgers equation $v_t +vv_x = 0$ with periodic boundary conditions is equivalent to a system of coupled quantum harmonic oscillators, which may be prepared in Glauber's coherent states as initial conditions. Sending the displacement of each oscillator to infinity at the same rate, we (1) confirm and (2) determine corrections to the quantum-classical correspondence principle. After diagonalizing the Hamiltonian with Schur polynomials, this is equivalent to proving (1) the concentration of profiles of Young diagrams around a limit shape and (2) their global Gaussian fluctuations for Schur measures with symbol $v : T \to R$ on the unit circle $T$. We identify the emergent objects with the push-forward along $v$ of (1) the uniform measure on $T$ and (2) $H^{1/2}$ noise on $T$. Our proofs exploit the integrability of the model as described by Nazarov-Sklyanin (2013). As time permits, we discuss structural connections to the theory of the topological recursion.[-]
After Fourier series, the quantum Hopf-Burgers equation $v_t +vv_x = 0$ with periodic boundary conditions is equivalent to a system of coupled quantum harmonic oscillators, which may be prepared in Glauber's coherent states as initial conditions. Sending the displacement of each oscillator to infinity at the same rate, we (1) confirm and (2) determine corrections to the quantum-classical correspondence principle. After diagonalizing the ...[+]

05E10 ; 20G43 ; 37K10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Flat surfaces and combinatorics - Goujard, Élise (Auteur de la Conférence) | CIRM H

Multi angle

Billiards in polygons are related to dynamics of the linear flow on flat surfaces. Through some examples of counting problems on flat surfaces and on moduli spaces of flat surfaces, we will see how combinatorics can lead to interesting dynamical results in this setting.

30F30 ; 32G15 ; 37D50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux problème de Ulam-Hammersley, qui consiste à étudier la longueur d'une plus longue sous-suite croissante d'une permutation uniforme de {1,...,n}. Il est en fait fructueux de travailler avec une version «poissonisée» du problème, où la taille n est tirée selon une loi de Poisson, dont on fera tendre le paramètre vers l'infini afin d'étudier les asymptotiques.
Dans la première séance, nous verrons que la mesure de Plancherel poissonisée est en fait un processus déterminantal, dont le noyau de corrélation fait intervenir les fonctions de Bessel. Nous utiliserons pour cela le formalisme de l'espace de Fock fermionique. (Toutes les notions nécessaires seront introduites au fur et à mesure, de la manière la plus élémentaire possible.)
Dans la seconde séance, nous étudierons les différentes asymptotiques du noyau de corrélation, par une application élégante de la méthode du col due à Okounkov et Reshetikhin. Nous verrons en particulier apparaître un phénomène de forme-limite, le noyau sinus discret dans le cas des limites «bulk» et le noyau d'Airy dans la limite «edge». In fine, nous aboutirons à une preuve du théorème de Baik-Deift-Johansson (1998) énonçant que les fluctuations de la longueur d'une plus longue sous-suite croissante d'une permutation uniforme ont asymptotiquement la même distribution que la plus grande valeur propre d'une matrice hermitienne aléatoire.[-]
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux ...[+]

05A17 ; 05E10 ; 60C05 ; 60G55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux problème de Ulam-Hammersley, qui consiste à étudier la longueur d'une plus longue sous-suite croissante d'une permutation uniforme de {1,...,n}. Il est en fait fructueux de travailler avec une version «poissonisée» du problème, où la taille n est tirée selon une loi de Poisson, dont on fera tendre le paramètre vers l'infini afin d'étudier les asymptotiques.
Dans la première séance, nous verrons que la mesure de Plancherel poissonisée est en fait un processus déterminantal, dont le noyau de corrélation fait intervenir les fonctions de Bessel. Nous utiliserons pour cela le formalisme de l'espace de Fock fermionique. (Toutes les notions nécessaires seront introduites au fur et à mesure, de la manière la plus élémentaire possible.)
Dans la seconde séance, nous étudierons les différentes asymptotiques du noyau de corrélation, par une application élégante de la méthode du col due à Okounkov et Reshetikhin. Nous verrons en particulier apparaître un phénomène de forme-limite, le noyau sinus discret dans le cas des limites «bulk» et le noyau d'Airy dans la limite «edge». In fine, nous aboutirons à une preuve du théorème de Baik-Deift-Johansson (1998) énonçant que les fluctuations de la longueur d'une plus longue sous-suite croissante d'une permutation uniforme ont asymptotiquement la même distribution que la plus grande valeur propre d'une matrice hermitienne aléatoire.[-]
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux ...[+]

05A17 ; 05E10 ; 60C05 ; 60G55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Angel and Schramm ont étudié en 2003 la limite locale des triangulations uniformes. La loi limite, appelée UIPT (pour Uniform Infinite planar Triangulation) a depuis été pas mal étudiée et est plutôt bien comprise. Dans cet exposé, je vais expliquer comment on peut obtenir un résultat analogue à celui d'Angel et Schramm mais lorsque les triangulations ne sont plus uniformes mais distribuées selon un modèle d'Ising. Une partie importante de la preuve consiste à étudier une équation sur des séries génératrices à deux variables catalytiques et repose sur la méthode des invariants de Tutte (introduite par Tutte et popularisée par Bernardi et Bousquet-Mélou). L'objet limite est pour le moment très mal compris et soulève un grand nombre de questions ouvertes ![-]
Angel and Schramm ont étudié en 2003 la limite locale des triangulations uniformes. La loi limite, appelée UIPT (pour Uniform Infinite planar Triangulation) a depuis été pas mal étudiée et est plutôt bien comprise. Dans cet exposé, je vais expliquer comment on peut obtenir un résultat analogue à celui d'Angel et Schramm mais lorsque les triangulations ne sont plus uniformes mais distribuées selon un modèle d'Ising. Une partie importante de la ...[+]

05C30 ; 05C10 ; 05C81 ; 60D05 ; 60B10

Sélection Signaler une erreur