En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 05C05 16 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Shuffles of trees - Hoffbeck, Eric (Author of the conference) | CIRM H

Multi angle

We study a notion of shuffle for trees which extends the usual notion of a shuffle for two natural numbers. Our notion of shuffle is motivated by the theory of operads and occurs in the theory of dendroidal sets. We give several equivalent descriptions of the shuffles, and prove some algebraic and combinatorial properties. In addition, we characterize shuffles in terms of open sets in a topological space associated to a pair of trees. This is a joint work with Ieke Moerdijk.[-]
We study a notion of shuffle for trees which extends the usual notion of a shuffle for two natural numbers. Our notion of shuffle is motivated by the theory of operads and occurs in the theory of dendroidal sets. We give several equivalent descriptions of the shuffles, and prove some algebraic and combinatorial properties. In addition, we characterize shuffles in terms of open sets in a topological space associated to a pair of trees. This is a ...[+]

55U10 ; 18D50 ; 05C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A phylogenetic tree that has been reconstructed from a given gene can describe a different evolutionary history from its underlying species tree. The reasons for this include: error in inferring the gene tree, incomplete lineage sorting, lateral gene transfer, and the absence of the gene in certain species. In this talk, I discuss probabilistic models and mathematical results that help address basic questions concerning the consistency and efficiency of different methods for inferring a species phylogeny from gene trees.[-]
A phylogenetic tree that has been reconstructed from a given gene can describe a different evolutionary history from its underlying species tree. The reasons for this include: error in inferring the gene tree, incomplete lineage sorting, lateral gene transfer, and the absence of the gene in certain species. In this talk, I discuss probabilistic models and mathematical results that help address basic questions concerning the consistency and ...[+]

92D15 ; 92C37 ; 92C80 ; 05C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Height coupled trees - Ünel, Meltem (Author of the conference) | CIRM H

Multi angle

We consider planar rooted random trees whose distribution is even for fixed height $h$ and size $N$ and whose height dependence is of exponential form $e^{-\mu h}$. Defining the total weight for such trees of fixed size to be $Z^{(\mu)}_N$, we determine its asymptotic behaviour for large $N$, for arbitrary real values of $\mu$. Based on this we evaluate the local limit of the corresponding probability measures and find a transition at $\mu=0$ from a single spine phase to a multi-spine phase. Correspondingly, there is a transition in the volume growth rate of balls around the root as a function of radius from linear growth for $\mu<0$ to the familiar quadratic growth at $\mu=0$ and to cubic growth for $\mu> 0$.[-]
We consider planar rooted random trees whose distribution is even for fixed height $h$ and size $N$ and whose height dependence is of exponential form $e^{-\mu h}$. Defining the total weight for such trees of fixed size to be $Z^{(\mu)}_N$, we determine its asymptotic behaviour for large $N$, for arbitrary real values of $\mu$. Based on this we evaluate the local limit of the corresponding probability measures and find a transition at $\mu=0$ ...[+]

05C05 ; 60J75 ; 60B10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Dans cet exposé, je présente une approche d'énumération asymptotique du type guess-and-check pour certaines récurrences, à travers de l'étude des arbres binaires compactés. Un arbre binaire compacté est un graphe acyclique dirigé qui encode un arbre binaire, où on garde une seule copie pour les sous-arbres identiques. Nous prouvons que le nombre des arbres binaires compactés de taille n est asymptotiquement $\Theta\left(n ! 4^n \exp \left(3 a_1 n^{1 / 3}\right) n^{3 / 4}\right)$, avec $a_1 \sim-2.338$ la plus grande racine de la fonction d'Airy. Typiquement, cette expression asymptotique contient un exponentiel étiré, qui est rare et intéressant dans l'énumération asymptotique. Pour arriver à ce résultat, nous postulons d'abord une récurrence à deux paramètres pour ces nombres, puis nous devinons la forme de l'asymptotique et la démontrons toujours à travers de la récurrence. Je présenterai aussi quelques autres applications, et notre effort à généraliser cette méthode.
Travail commun avec Andrew Elvey Price et Michael Wallner.
https://igm.univ-mlv.fr/~wfang/[-]
Dans cet exposé, je présente une approche d'énumération asymptotique du type guess-and-check pour certaines récurrences, à travers de l'étude des arbres binaires compactés. Un arbre binaire compacté est un graphe acyclique dirigé qui encode un arbre binaire, où on garde une seule copie pour les sous-arbres identiques. Nous prouvons que le nombre des arbres binaires compactés de taille n est asymptotiquement $\Theta\left(n ! 4^n \exp \left(3 a_1 ...[+]

05C30 ; 05A16 ; 05C20 ; 05C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Self-interacting walks and uniform spanning forests - Peres, Yuval (Author of the conference) | CIRM H

Post-edited

In the first half of the talk, I will survey results and open problems on transience of self-interacting martingales. In particular, I will describe joint works with S. Popov, P. Sousi, R. Eldan and F. Nazarov on the tradeoff between the ambient dimension and the number of different step distributions needed to obtain a recurrent process. In the second, unrelated, half of the talk, I will present joint work with Tom Hutchcroft, showing that the component structure of the uniform spanning forest in $\mathbb{Z}^d$ changes every dimension for $d > 8$. This sharpens an earlier result of Benjamini, Kesten, Schramm and the speaker (Annals Math 2004), where we established a phase transition every four dimensions. The proofs are based on a the connection to loop-erased random walks.[-]
In the first half of the talk, I will survey results and open problems on transience of self-interacting martingales. In particular, I will describe joint works with S. Popov, P. Sousi, R. Eldan and F. Nazarov on the tradeoff between the ambient dimension and the number of different step distributions needed to obtain a recurrent process. In the second, unrelated, half of the talk, I will present joint work with Tom Hutchcroft, showing that the ...[+]

05C05 ; 05C80 ; 60G50 ; 60J10 ; 60K35 ; 82B43

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Distributive Aronszajn trees - Rinot, Assaf (Author of the conference) | CIRM H

Post-edited

It is well-known that the statement "all $\aleph_1$-Aronszajn trees are special'' is consistent with ZFC (Baumgartner, Malitz, and Reinhardt), and even with ZFC+GCH (Jensen). In contrast, Ben-David and Shelah proved that, assuming GCH, for every singular cardinal $\lambda$: if there exists a $\lambda^+$-Aronszajn tree, then there exists a non-special one. Furthermore:
Theorem (Ben-David and Shelah, 1986) Assume GCH and that $\lambda$ is singular cardinal. If there exists a special $\lambda^+$-Aronszajn tree, then there exists a $\lambda$-distributive $\lambda^+$-Aronszajn tree.
This suggests that following stronger statement:
Conjecture. Assume GCH and that $\lambda$ is singular cardinal.
If there exists a $\lambda^+$-Aronszajn tree,
then there exists a $\lambda$-distributive $\lambda^+$-Aronszajn tree.

The assumption that there exists a $\lambda^+$-Aronszajn tree is a very mild square-like hypothesis (that is, $\square(\lambda^+,\lambda)$).
In order to bloom a $\lambda$-distributive tree from it, there is a need for a toolbox, each tool taking an abstract square-like sequence and producing a sequence which is slightly better than the original one.
For this, we introduce the monoid of postprocessing functions and study how it acts on the class of abstract square sequences.
We establish that, assuming GCH, the monoid contains some very powerful functions. We also prove that the monoid is closed under various mixing operations.
This allows us to prove a theorem which is just one step away from verifying the conjecture:

Theorem 1. Assume GCH and that $\lambda$ is a singular cardinal.
If $\square(\lambda^+,<\lambda)$ holds, then there exists a $\lambda$-distributive $\lambda^+$-Aronszajn tree.
Another proof, involving a 5-steps chain of applications of postprocessing functions, is of the following theorem.

Theorem 2. Assume GCH. If $\lambda$ is a singular cardinal and $\square(\lambda^+)$ holds, then there exists a $\lambda^+$-Souslin tree which is coherent mod finite.

This is joint work with Ari Brodsky. See: http://assafrinot.com/paper/29[-]
It is well-known that the statement "all $\aleph_1$-Aronszajn trees are special'' is consistent with ZFC (Baumgartner, Malitz, and Reinhardt), and even with ZFC+GCH (Jensen). In contrast, Ben-David and Shelah proved that, assuming GCH, for every singular cardinal $\lambda$: if there exists a $\lambda^+$-Aronszajn tree, then there exists a non-special one. Furthermore:
Theorem (Ben-David and Shelah, 1986) Assume GCH and that $\lambda$ is singular ...[+]

03E05 ; 03E65 ; 03E35 ; 05C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Interlacements and the uniform spanning forest - Hutchcroft, Tom (Author of the conference) | CIRM H

Multi angle

The Aldous-Broder algorithm allows one to sample the uniform spanning tree of a finite graph as the set of first-entry edges of a simple random walk. In this talk, I will discuss how this can be extended to infinite transient graphs by replacing the random walk with the random interlacement process. I will then outline how this new sampling algorithm can be used to compute critical exponents for the uniform spanning forest of $Z^d$.

60D05 ; 05C05 ; 20F65

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Condensation in random trees 1/3 - Kortchemski, Igor (Author of the conference) | CIRM H

Multi angle

We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms for instance connected with data allocation), combinatorics (trees are combinatorial objects by essence), mathematical genetics (as phylogenetic trees), in statistical physics (for instance in connection with random maps as we will see below) and in probability theory (where trees describe the genealogical structure of branching processes, fragmentation processes, etc.). We shall specifically focus on Bienaymé–Galton–Watson trees (which is the simplest
possible genealogical model, where individuals reproduce in an asexual and stationary way), whose offspring distribution is subcritical and is regularly varying. The main tool is to code these trees by integer-valued random walks with negative drift, conditioned on a late return to the origin. The study of such random walks, which is of independent interest, reveals a "one-big jump principle" (identified by Armendáriz & Loulakis in 2011), thus explaining the condensation phenomenon.

Section 1 gives some history and motivations for studying Bienaymé–Galton–Watson trees.
Section 2 defines Bienaymé–Galton–Watson trees.
Section 3 explains how such trees can be coded by random walks, and introduce several useful tools, such as cyclic shifts and the Vervaat transformation, to study random walks under a conditioning involving positivity constraints.
Section 4 contains exercises to manipulate connections between BGW trees and random walks, and to study ladder times of downward skip-free random walks.
Section 5 gives estimates, such as maximal inequalities, for random walks in order to establish a "one-big jump principle".
Section 6 transfers results on random walks to random trees in order to identity the condensation phenomenon.

The goal of these lecture notes is to be as most self-contained as possible.[-]
We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms ...[+]

60J80 ; 60G50 ; 05C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Condensation in random trees 2/3 - Kortchemski, Igor (Author of the conference) | CIRM H

Multi angle

We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms for instance connected with data allocation), combinatorics (trees are combinatorial objects by essence), mathematical genetics (as phylogenetic trees), in statistical physics (for instance in connection with random maps as we will see below) and in probability theory (where trees describe the genealogical structure of branching processes, fragmentation processes, etc.). We shall specifically focus on Bienaymé–Galton–Watson trees (which is the simplest
possible genealogical model, where individuals reproduce in an asexual and stationary way), whose offspring distribution is subcritical and is regularly varying. The main tool is to code these trees by integer-valued random walks with negative drift, conditioned on a late return to the origin. The study of such random walks, which is of independent interest, reveals a "one-big jump principle" (identified by Armendáriz & Loulakis in 2011), thus explaining the condensation phenomenon.

Section 1 gives some history and motivations for studying Bienaymé–Galton–Watson trees.
Section 2 defines Bienaymé–Galton–Watson trees.
Section 3 explains how such trees can be coded by random walks, and introduce several useful tools, such as cyclic shifts and the Vervaat transformation, to study random walks under a conditioning involving positivity constraints.
Section 4 contains exercises to manipulate connections between BGW trees and random walks, and to study ladder times of downward skip-free random walks.
Section 5 gives estimates, such as maximal inequalities, for random walks in order to establish a "one-big jump principle".
Section 6 transfers results on random walks to random trees in order to identity the condensation phenomenon.

The goal of these lecture notes is to be as most self-contained as possible.[-]
We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms ...[+]

60J80 ; 60G50 ; 05C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error