En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Calka, Pierre 7 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. L'exposé sera centré sur la description des polytopes aléatoires qui sont construits comme enveloppes convexes d'un ensemble aléatoire de points. On s'intéressera plus particulièrement aux cas d'un nuage de points uniformes dans un corps convexe fixé ou d'un nuage de points gaussiens et on se focalisera sur l'étude asymptotique de grandeurs aléatoires associées, en particulier via des calculs de variances limites. Seront également évoqués d'autres modèles classiques de la géométrie aléatoire tels que la mosaïque de Poisson-Voronoi.[-]
La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. ...[+]

60D05 ; 60F05 ; 52A22 ; 60G55

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Detection theory and novelty filters - Morel, Jean-Michel (Author of the conference) | CIRM H

Post-edited

In this presentation based on on-line demonstrations of algorithms and on the examination of several practical examples, I will reflect on the problem of modeling a detection task in images. I will place myself in the (very frequent) case where the detection task can not be formulated in a Bayesian framework or, rather equivalently that can not be solved by simultaneous learning of the model of the object and that of the background. (In the case where there are plenty of examples of the background and of the object to be detected, the neural networks provide a practical answer, but without explanatory power). Nevertheless for the detection without "learning", I will show that we can not avoid building a background model, or possibly learn it. But this will not require many examples.

Joint works with Axel Davy, Tristan Dagobert, Agnes Desolneux, Thibaud Ehret.[-]
In this presentation based on on-line demonstrations of algorithms and on the examination of several practical examples, I will reflect on the problem of modeling a detection task in images. I will place myself in the (very frequent) case where the detection task can not be formulated in a Bayesian framework or, rather equivalently that can not be solved by simultaneous learning of the model of the object and that of the background. (In the case ...[+]

65D18 ; 68U10 ; 68T05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Curvature measures of random sets - Zähle, Martina (Author of the conference) | CIRM H

Multi angle

A survey on some developments in curvature theory for random sets will be given. We first consider previous models with classical singularities like polyconvex sets or unions of sets with positive reach. The main part of the talk concerns extensions to certain classes of random fractals which have been investigated in the last years. In these cases limits of rescaled versions for suitable approximations are used.

53C65 ; 52A22 ; 60D05 ; 28A80 ; 28A75

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Random mosaics generated by stationary Poisson hyperplane processes in Euclidean space are a much studied object of Stochastic Geometry, and their typical cells or zero cells belong to the most prominent models of random polytopes. After a brief review, we turn to analogues in spherical space or, roughly equivalently, in a conic setting. A given number of i.i.d. random hyperplanes through the origin in $\mathbb{R}^d$ generate a tessellation of $\mathbb{R}^d$ into polyhedral cones. The typical cone of this tessellation, called a 'random Schläfli cone', is the object of our study. We provide first moments and mixed second moments of some geometric functionals, and compute probabilities of non-trivial intersection of a random Schläfli cone with a fixed polyhedral cone, or of two independent random Schläfli cones.

Parts are joint work with Matthias Reitzner, others with Daniel Hug.[-]
Random mosaics generated by stationary Poisson hyperplane processes in Euclidean space are a much studied object of Stochastic Geometry, and their typical cells or zero cells belong to the most prominent models of random polytopes. After a brief review, we turn to analogues in spherical space or, roughly equivalently, in a conic setting. A given number of i.i.d. random hyperplanes through the origin in $\mathbb{R}^d$ generate a tessellation of ...[+]

52A22 ; 60D05 ; 52A55 ; 52C35 ; 52B05 ; 51M20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The Poisson-saddlepoint approximation - Baddeley, Adrian (Author of the conference) | CIRM H

Multi angle

Gibbs spatial point processes are important models in theoretical physics and in spatial statistics. After a brief survey of Gibbs point processes, we will present a method for approximating their most important characteristic, the intensity of the process. The method has some affinity with the classical saddlepoint approximations of probability densities. For pairwise-interaction processes the approximation can be computed directly : it performs very well in many cases, but not in all cases. For higher-order interactions, we invoke limit results from stochastic geometry due to Roger Miles and the late Peter Hall, in order to compute the approximation.

Joint work with Gopalan Nair.[-]
Gibbs spatial point processes are important models in theoretical physics and in spatial statistics. After a brief survey of Gibbs point processes, we will present a method for approximating their most important characteristic, the intensity of the process. The method has some affinity with the classical saddlepoint approximations of probability densities. For pairwise-interaction processes the approximation can be computed directly : it ...[+]

60G55 ; 82B21 ; 62E17

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Cancellations in random nodal sets - Peccati, Giovanni (Author of the conference) | CIRM H

Multi angle

I will discuss second order results for the length of nodal sets and the number of phase singularities associated with Gaussian random Laplace eigenfunctions, both on compact manifolds (the flat torus) and on subset of the plane. I will mainly focus on 'cancellation phenomena' for nodal variances in the high-frequency limit, with specific emphasis on central and non-central second order results.

Based on joint works with F. Dalmao, D. Marinucci, I. Nourdin, M. Rossi and I. Wigman.[-]
I will discuss second order results for the length of nodal sets and the number of phase singularities associated with Gaussian random Laplace eigenfunctions, both on compact manifolds (the flat torus) and on subset of the plane. I will mainly focus on 'cancellation phenomena' for nodal variances in the high-frequency limit, with specific emphasis on central and non-central second order results.

Based on joint works with F. Dalmao, D. ...[+]

60G60 ; 60D05 ; 60B10 ; 58J50 ; 35P20 ; 60F05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random walks on dynamical percolation - Sousi, Perla (Author of the conference) | CIRM H

Multi angle

We study the behaviour of random walk on dynamical percolation. In this model, the edges of a graph are either open or closed and refresh their status at rate $\mu$, while at the same time a random walker moves on $G$ at rate 1, but only along edges which are open. On the d-dimensional torus with side length $n$, when the bond parameter is subcritical, the mixing times for both the full system and the random walker were determined by Peres, Stauffer and Steif. I will talk about the supercritical case, which was left open, but can be analysed using evolving sets.

Joint work with Y. Peres and J. Steif.[-]
We study the behaviour of random walk on dynamical percolation. In this model, the edges of a graph are either open or closed and refresh their status at rate $\mu$, while at the same time a random walker moves on $G$ at rate 1, but only along edges which are open. On the d-dimensional torus with side length $n$, when the bond parameter is subcritical, the mixing times for both the full system and the random walker were determined by Peres, ...[+]

60K35 ; 60J10 ; 60G50 ; 82B43

Bookmarks Report an error