En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 57M07 13 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Diagram groups and their geometry - lecture 2 - Genevois, Anthony (Auteur de la conférence) | CIRM H

Multi angle

In these talks, we will discuss a family of groups called diagram groups, studied extensively by Guba and Sapir and others. These depend on semigroup presentations and turn out to have many good algorithmic properties. The first lecture will be a survey of diagram groups, including several examples and generalizations. The second lecture will take a geometric approach, understanding these groups through median-like geometry.

20F65 ; 05C25 ; 57M07

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Automorphisms of hyperbolic groups and growth - Horbez, Camille (Auteur de la conférence) | CIRM H

Post-edited

Let $G$ be a torsion-free hyperbolic group, let $S$ be a finite generating set of $G$, and let $f$ be an automorphism of $G$. We want to understand the possible growth types for the word length of $f^n(g)$, where $g$ is an element of $G$. Growth was completely described by Thurston when $G$ is the fundamental group of a hyperbolic surface, and can be understood from Bestvina-Handel's work on train-tracks when $G$ is a free group. We address the general case of a torsion-free hyperbolic group $G$; we show that every element in $G$ has a well-defined exponential growth rate under iteration of $f$, and that only finitely many exponential growth rates arise as $g$ varies in $G$. In addition, we show the following dichotomy: every element of $G$ grows either exponentially fast or polynomially fast under iteration of $f$.
This is a joint work with Rémi Coulon, Arnaud Hilion and Gilbert Levitt.[-]
Let $G$ be a torsion-free hyperbolic group, let $S$ be a finite generating set of $G$, and let $f$ be an automorphism of $G$. We want to understand the possible growth types for the word length of $f^n(g)$, where $g$ is an element of $G$. Growth was completely described by Thurston when $G$ is the fundamental group of a hyperbolic surface, and can be understood from Bestvina-Handel's work on train-tracks when $G$ is a free group. We address the ...[+]

57M07 ; 20E06 ; 20F34 ; 20F65 ; 20E36 ; 20F67

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Groups with Bowditch boundary a 2-sphere - Tshishiku, Bena (Auteur de la conférence) | CIRM H

Multi angle

Bestvina-Mess showed that the duality properties of a group $G$ are encoded in any boundary that gives a Z-compactification of $G$. For example, a hyperbolic group with Gromov boundary an $n$-sphere is a PD$(n+1)$ group. For relatively hyperbolic pairs $(G,P)$, the natural boundary - the Bowditch boundary - does not give a Z-compactification of G. Nevertheless we show that if the Bowditch boundary of $(G,P)$ is a 2-sphere, then $(G,P)$ is a PD(3) pair.
This is joint work with Genevieve Walsh.[-]
Bestvina-Mess showed that the duality properties of a group $G$ are encoded in any boundary that gives a Z-compactification of $G$. For example, a hyperbolic group with Gromov boundary an $n$-sphere is a PD$(n+1)$ group. For relatively hyperbolic pairs $(G,P)$, the natural boundary - the Bowditch boundary - does not give a Z-compactification of G. Nevertheless we show that if the Bowditch boundary of $(G,P)$ is a 2-sphere, then $(G,P)$ is a ...[+]

57M07 ; 20F67 ; 20F65 ; 57M50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Farrell-Jones conjecture for a given group is an important conjecture in manifold theory. I will review some of its consequences and will discuss a class of groups for which it is known, for example 3-manifold groups. Finally, I will discuss a proof that free-by-cyclic groups satisfy FJC, answering a question of Lück.
This is joint work with Koji Fujiwara and Derrick Wigglesworth.

57M20 ; 20F65 ; 57M07 ; 18F25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Complexes of parabolic subgroups for Artin groups - Cumplido Cabello, Maria (Auteur de la conférence) | CIRM H

Virtualconference

One of the main examples of Artin groups are braid groups. We can use powerful topological methods on braid groups that come from the action of braid on the curve complex of the n-puctured disk. However, these methods cannot be applied in general to Artin groups. In this talk we explain how we can construct a complex for Artin groups, which is an analogue to the curve complex in the braid case, by using parabolic subgroups.

20F36 ; 20F65 ; 57M07

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A well-known result of Davis-Januszkiewicz is that every right-angled Artin group (RAAG) is commensurable to some rightangled Coxeter group (RACG). In this talk we consider the converse question: which RACGs are commensurable to some RAAG? To do so, we investigate some natural candidate RAAG subgroups of RACGs and characterize when such subgroups are indeed RAAGs. As an application, we show that a 2-dimensional, one-ended RACG with planar defining graph is quasiisometric to a RAAG if and only if it is commensurable to a RAAG. This talk is based on work joint with Pallavi Dani.[-]
A well-known result of Davis-Januszkiewicz is that every right-angled Artin group (RAAG) is commensurable to some rightangled Coxeter group (RACG). In this talk we consider the converse question: which RACGs are commensurable to some RAAG? To do so, we investigate some natural candidate RAAG subgroups of RACGs and characterize when such subgroups are indeed RAAGs. As an application, we show that a 2-dimensional, one-ended RACG with planar ...[+]

20F65 ; 57M07 ; 20F55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quasi-actions and almost normal subgroups - Margolis, Alex (Auteur de la conférence) | CIRM H

Virtualconference

If a group G acts isometrically on a metric space X and Y is any metric space that is quasi-isometric to X, then G quasi-acts on Y. A fundamental problem in geometric group theory is to straighten (or quasi-conjugate) a quasi-action to an isometric action on a nice space. We will introduce and investigate discretisable spaces, those for which every cobounded quasi-action can be quasi-conjugated to an isometric action of a locally finite graph. Work of Mosher-Sageev-Whyte shows that free groups have this property, but it holds much more generally. For instance, we show that every hyperbolic group is either commensurable to a cocompact lattice in rank one Lie group, or it is discretisable.
We give several applications and indicate possible future directions of this ongoing work, particularly in showing that normal and almost normal subgroups are often preserved by quasi-isometries. For instance, we show that any finitely generated group quasi-isometric to a Z-by-hyperbolic group is Z-by-hyperbolic. We also show that within the class of residually finite groups, the class of central extensions of finitely generated abelian groups by hyperbolic groups is closed under quasi-isometries.[-]
If a group G acts isometrically on a metric space X and Y is any metric space that is quasi-isometric to X, then G quasi-acts on Y. A fundamental problem in geometric group theory is to straighten (or quasi-conjugate) a quasi-action to an isometric action on a nice space. We will introduce and investigate discretisable spaces, those for which every cobounded quasi-action can be quasi-conjugated to an isometric action of a locally finite graph. ...[+]

20F65 ; 20E08 ; 20J05 ; 57M07

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Intersections and joins of subgroups in free groups - Soroko, Ignat (Auteur de la conférence) | CIRM H

Virtualconference

The famous Hanna Neumann Conjecture (now the Friedman--Mineyev theorem) gives an upper bound for the ranks of the intersection of arbitrary subgroups H and K of a non-abelian free group. It is an interesting question to 'quantify' this bound with respect to the rank of the join of H and K, the subgroup generated by H and K. In this talk I describe what is known about the set of realizable values (rank of join, rank of intersection) for arbitrary H, K, and about my recent results in this direction. In particular, we resolve the remaining open case (m=4) of Guzman's `Group-Theoretic Conjecture' in the affirmative. This has some interesting corollaries for the geometry of hyperbolic 3-manifolds. Our methods rely on recasting the topological pushout of core graphs in terms of the Dicks graphs introduced in the context of his Amalgamated Graph Conjecture. This allows to translate the question of existence of a pair of subgroups H,K with prescribed ranks of joins and intersections into graph theoretic language, and completely resolve it in some cases. In particular, we completely describe the locus of realizable values of ranks in the case when the rank of one of the subgroups H,K equals two.[-]
The famous Hanna Neumann Conjecture (now the Friedman--Mineyev theorem) gives an upper bound for the ranks of the intersection of arbitrary subgroups H and K of a non-abelian free group. It is an interesting question to 'quantify' this bound with respect to the rank of the join of H and K, the subgroup generated by H and K. In this talk I describe what is known about the set of realizable values (rank of join, rank of intersection) for arbitrary ...[+]

20E05 ; 20E07 ; 20F65 ; 57M07

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Action rigidity for free products of hyperbolic manifold groups - Stark, Emily (Auteur de la conférence) | CIRM H

Virtualconference

The relationship between the large-scale geometry of a group and its algebraic structure can be studied via three notions: a group's quasi-isometry class, a group's abstract commensurability class, and geometric actions on proper geodesic metric spaces. A common model geometry for groups G and G' is a proper geodesic metric space on which G and G' act geometrically. A group G is action rigid if every group G' that has a common model geometry with G is abstractly commensurable to G. For example, a closed hyperbolic n-manifold is not action rigid for all n at least three. In contrast, we show that free products of closed hyperbolic manifold groups are action rigid. Consequently, we obtain the first examples of Gromov hyperbolic groups that are quasi-isometric but do not virtually have a common model geometry. This is joint work with Daniel Woodhouse.[-]
The relationship between the large-scale geometry of a group and its algebraic structure can be studied via three notions: a group's quasi-isometry class, a group's abstract commensurability class, and geometric actions on proper geodesic metric spaces. A common model geometry for groups G and G' is a proper geodesic metric space on which G and G' act geometrically. A group G is action rigid if every group G' that has a common model geometry ...[+]

20F65 ; 20F67 ; 20E06 ; 57M07 ; 57M10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
braid groups - conformal blocks - KZ equation - quantum group symmetry - hypergeometric integrals - Gauss-Manin connection

20F36 ; 32G34 ; 32S40 ; 57M07

Sélection Signaler une erreur