Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Maps decorated by the Ising model are a remarkable instance of a model of non-uniform maps with very nice enumerative properties. In this talk, I will first explain how one can obtain a differential equation for the generating function of Ising-decorated cubic maps in arbitrary genus, related to the Kadomtsev--Petviashvili (KP) hierarchy. In particular, this leads to an efficient algorithm to enumerate Ising cubic maps in high genus. I will also present and compare implementations of this algorithm in Maple and SageMath. This is based on a joint work with Mireille Bousquet-Mélou and Baptiste Louf.
[-]
Maps decorated by the Ising model are a remarkable instance of a model of non-uniform maps with very nice enumerative properties. In this talk, I will first explain how one can obtain a differential equation for the generating function of Ising-decorated cubic maps in arbitrary genus, related to the Kadomtsev--Petviashvili (KP) hierarchy. In particular, this leads to an efficient algorithm to enumerate Ising cubic maps in high genus. I will also ...
[+]
05A15 ; 82B20 ; 37K10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
An $N$ dimer cover of a graph is a collection of edges such that every vertex is contained in exactly $N$ edges of the collection. The multinomial dimer model studies a family of natural but non-uniform measures on $N$ dimer covers. In the large $N$ limit, this model turns out to be exactly solvable in a strong sense, in any dimension $N$. In this talk, I will define the model, and discuss its properties on subgraphs of lattices in the iterated limit as the multiplicity $N$ and then the size of the graph go to infinity, analogous to the scaling limit question for 2D standard dimers addressed by Cohn, Kenyon, and Propp. In this setting we can explicitly compute limit shapes in some examples, in particular for the Aztec diamond and a 3D analog called the Aztec cuboid. I will also discuss the surrounding theory, including explicit formulas for the free energy, large deviations, EulerLagrange equations, gauge functions, and regularity properties of limit shapes.This is joint work with Rick Kenyon.
[-]
An $N$ dimer cover of a graph is a collection of edges such that every vertex is contained in exactly $N$ edges of the collection. The multinomial dimer model studies a family of natural but non-uniform measures on $N$ dimer covers. In the large $N$ limit, this model turns out to be exactly solvable in a strong sense, in any dimension $N$. In this talk, I will define the model, and discuss its properties on subgraphs of lattices in the iterated ...
[+]
82B20 ; 60F10 ; 82B23
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Après avoir expliqué la notion de Z-invariance pour les modèles de mécanique statistique, nous introduisons une famille à un paramètre (dépendant du module elliptique) de Laplaciens massiques Z-invariants définis sur les graphes isoradiaux. Nous démontrons une formule explicite pour son inverse, la fonction de Green massique, qui a la propriété remarquable de ne dépendre que de la géométrie locale du graphe. Nous expliquerons les conséquences de ce résultat pour le modèle des forêts couvrantes, en particulier la preuve d'une transition de phase d'ordre 2 avec le modèle des arbre couvrants critiques sur les graphes isoradiaux, introduit par Kenyon. Finalement, nous considérons la courbe spectrale de ce Laplacien massique et montrons qu'il s'agit d'une courbe de Harnack de genre 1.
Il s'agit d'un travail en collaboration avec Cédric Boutillier et Kilian Raschel.
[-]
Après avoir expliqué la notion de Z-invariance pour les modèles de mécanique statistique, nous introduisons une famille à un paramètre (dépendant du module elliptique) de Laplaciens massiques Z-invariants définis sur les graphes isoradiaux. Nous démontrons une formule explicite pour son inverse, la fonction de Green massique, qui a la propriété remarquable de ne dépendre que de la géométrie locale du graphe. Nous expliquerons les conséquences de ...
[+]
82B20 ; 82B23 ; 82B41 ; 14H52 ; 14H70
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Les chemins du plan confinés dans un quadrant, ou plus généralement dans un cône convexe, ont été beaucoup étudiés ces dernières années, et ont donné lieu à de jolis résultats. Le plus remarquable dit que, pour les chemins à petits pas, la série génératrice est différentiellement finie si et seulement si un certain groupe de transformations rationnelles, construit à partir des pas autorisés, est fini. Les méthodes employées, allant de l'algèbre élémentaire sur les séries formelles à l'analyse complexe, en passant, entre autres, par le calcul formel, sont variées, ce qui participe au charme du sujet. Mais quid des chemins dans un cône non convexe, et, typiquement, des chemins évitant un quadrant ? On étudiera les deux cas les plus naturels (pas NSEO, quadrant négatif ou quadrant Ouest interdit), en esquissant avec optimisme ce que pourrait être une classification pour ce problème.
[-]
Les chemins du plan confinés dans un quadrant, ou plus généralement dans un cône convexe, ont été beaucoup étudiés ces dernières années, et ont donné lieu à de jolis résultats. Le plus remarquable dit que, pour les chemins à petits pas, la série génératrice est différentiellement finie si et seulement si un certain groupe de transformations rationnelles, construit à partir des pas autorisés, est fini. Les méthodes employées, allant de l'algèbre ...
[+]
82B20 ; 05A15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Graphons and graphexes are limits of graphs which allow us to model and estimate properties of large-scale networks. In this pair of talks, we review the theory of dense graph limits, and give two alterative theories for limits of sparse graphs – one leading to unbounded graphons over probability spaces, and the other leading to bounded graphons (and graphexes) over sigma-finite measure spaces. Talk I, given by Jennifer, will review the general theory, highlight the unbounded graphons, and show how they can be used to consistently estimate properties of large sparse networks. This talk will also give an application of these sparse graphons to collaborative filtering on sparse bipartite networks. Talk II, given by Christian, will recast limits of dense graphs in terms of exchangeability and the Aldous Hoover Theorem, and generalize this to obtain sparse graphons and graphexes as limits of subgraph samples from sparse graph sequences. This will provide a dual view of sparse graph limits as processes and random measures, an approach which allows a generalization of many of the well-known results and techniques for dense graph sequences.
[-]
Graphons and graphexes are limits of graphs which allow us to model and estimate properties of large-scale networks. In this pair of talks, we review the theory of dense graph limits, and give two alterative theories for limits of sparse graphs – one leading to unbounded graphons over probability spaces, and the other leading to bounded graphons (and graphexes) over sigma-finite measure spaces. Talk I, given by Jennifer, will review the general ...
[+]
05C80 ; 05C60 ; 60F10 ; 82B20
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
In the 40s R. Feynman invented a simple model of electron motion, which is now known as Feynman's checkers. This model is also known as the one-dimensional quantum walk or the imaginary temperature Ising model. In Feynman's checkers, a checker moves on a checkerboard by simple rules, and the result describes the quantum-mechanical behavior of an electron.
We solve mathematically a problem by R. Feynman from 1965, which was to prove that the model reproduces the usual quantum-mechanical free-particle kernel for large time, small average velocity, and small lattice step. We compute the small-lattice-step and the large-time limits, justifying heuristic derivations by J. Narlikar from 1972 and by A.Ambainis et al. from 2001. The main tools are the Fourier transform and the stationary phase method.
A more detailed description of the model can be found in Skopenkov M.& Ustinov A. Feynman checkers: towards algorithmic quantum theory. (2020) https://arxiv.org/abs/2007.12879
[-]
In the 40s R. Feynman invented a simple model of electron motion, which is now known as Feynman's checkers. This model is also known as the one-dimensional quantum walk or the imaginary temperature Ising model. In Feynman's checkers, a checker moves on a checkerboard by simple rules, and the result describes the quantum-mechanical behavior of an electron.
We solve mathematically a problem by R. Feynman from 1965, which was to prove that the ...
[+]
82B20 ; 11L03 ; 68Q12 ; 81P68 ; 81T25 ; 81T40 ; 05A17 ; 11P82 ; 33C45
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Recently several papers appears on ArXiv, on various topics apparently unrelated such as: spin system observable (T. Helmuth, A. Shapira), Fibonacci polynomials (A. Garsia, G. Ganzberger), fully commutative elements in Coxeter groups (E. Bagno, R. Biagioli, F. Jouhet, Y. Roichman), reciprocity theorem for bounded Dyck paths (J. Cigler, C. Krattenthaler), uniform random spanning tree in graphs (L. Fredes, J.-F. Marckert). In each of these papers the theory of heaps of pieces plays a central role. We propose a walk relating these topics, starting from the well-known loop erased random walk model (LERW), going around the classical bijection between lattice paths and heaps of cycles, and a second less known bijection due to T. Helmuth between lattice paths and heaps of oriented loops, in relation with the Ising model in physics, totally non-backtracking paths and zeta function in graphs. Dyck paths, these two bijections involve heaps of dimers and heaps of segments. A duality between these two kinds of heaps appears in some of the above papers, in relation with orthogonal polynomials and fully commutative elements. If time allows we will finish this excursion with the correspondence between heaps of segments, staircase polygons and q-Bessel functions.
[-]
Recently several papers appears on ArXiv, on various topics apparently unrelated such as: spin system observable (T. Helmuth, A. Shapira), Fibonacci polynomials (A. Garsia, G. Ganzberger), fully commutative elements in Coxeter groups (E. Bagno, R. Biagioli, F. Jouhet, Y. Roichman), reciprocity theorem for bounded Dyck paths (J. Cigler, C. Krattenthaler), uniform random spanning tree in graphs (L. Fredes, J.-F. Marckert). In each of these papers ...
[+]
01A55 ; 05A15 ; 11B39 ; 20F55 ; 82B20
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
There is the same number of $n \times n$ alternating sign matrices (ASMs) as there is of descending plane partitions (DPPs) with parts no greater than $n$, but finding an explicit bijection is, despite many efforts, an open problem for about $40$ years now. So far, four pairs of statistics that have the same joint distribution have been identified. We introduce extensions of ASMs and of DPPs along with $n+3$ pairs of statistics that have the same joint distribution. The ASM-DPP equinumerosity is obtained as an easy consequence by considering the $(-1)$enumerations of these extended objects with respect to one pair of the $n+3$ pairs of statistics. One important tool of our proof is a multivariate generalization of the operator formula for the number of monotone triangles with prescribed bottom row that generalizes Schur functions. Joint work with Florian Aigner.
[-]
There is the same number of $n \times n$ alternating sign matrices (ASMs) as there is of descending plane partitions (DPPs) with parts no greater than $n$, but finding an explicit bijection is, despite many efforts, an open problem for about $40$ years now. So far, four pairs of statistics that have the same joint distribution have been identified. We introduce extensions of ASMs and of DPPs along with $n+3$ pairs of statistics that have the ...
[+]
05A05 ; 05A15 ; 05A19 ; 15B35 ; 82B20 ; 82B23
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will first introduce a general class of mean-field-like spin systems with random couplings that comprises both the Ising model on inhomogeneous dense random graphs and the randomly diluted Hopfield model. I will then present quantitative estimates of metastability in large volumes at fixed temperatures when these systems evolve according to a Glauber dynamics, i.e. where spins flip with Metropolis rates at inverse temperature $\beta $. The main result identifies conditions ensuring that with high probability the system behaves like the corresponding system where the random couplings are replaced by their averages. More precisely, we prove that the metastability of the former system is implied with high probability by the metastability of the latter. Moreover, we consider relevant metastable hitting times of the two systems and find the asymptotic tail behaviour and the moments of their ratio. This result provides an extension of the results known for the Ising model on the the Erdos-Renyi random graph. Our proofs use the potential-theoretic approach to metastability in combination with concentration inequalities.
Based on a joint work in collaboration with Anton Bovier, Frank den Hollander, Saeda Marello and Martin Slowik.
[-]
I will first introduce a general class of mean-field-like spin systems with random couplings that comprises both the Ising model on inhomogeneous dense random graphs and the randomly diluted Hopfield model. I will then present quantitative estimates of metastability in large volumes at fixed temperatures when these systems evolve according to a Glauber dynamics, i.e. where spins flip with Metropolis rates at inverse temperature $\beta $. The ...
[+]
60K35 ; 60K37 ; 82B20 ; 82B44 ; 82C44
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We propose a platform for finding the global minimum of XY Hamiltonian with polariton graphs. We derive an approximate analytic solution to the spinless complex Ginzburg-Landau equation that describes the density and kinetics of a polariton condensate under incoherent pumping. The analytic expression of the wavefunction is used as the building block for constructing the XY Hamiltonian of two-dimensional polariton graphs. We illustrate examples of the quantum simulator for various classical magnetic phases on some simple lattice geometries: linear, triangular, square.
[-]
We propose a platform for finding the global minimum of XY Hamiltonian with polariton graphs. We derive an approximate analytic solution to the spinless complex Ginzburg-Landau equation that describes the density and kinetics of a polariton condensate under incoherent pumping. The analytic expression of the wavefunction is used as the building block for constructing the XY Hamiltonian of two-dimensional polariton graphs. We illustrate examples ...
[+]
82B20 ; 81T80 ; 35Q56