En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 05E10 11 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Asymptotic representation theory deals with representations of groups of growing size. For classical Lie groups there are two distinguished regimes of growth. One of them is related to representations of infinite-dimensional groups, and the other appears in combinatorial and probabilistic questions. In the talk I will discuss differences and similarities between these two settings.

22E45 ; 60B20 ; 05E10 ; 60C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Wilson loops are the basic observables of Yang—Mills theory, and their expectation is rigorously defined on the Euclidean plane and on a compact Riemannian surface. Focusing on the case where the structure group is the unitary group, I will present a formula that computes any Wilson loop expectation in almost purely combinatorial terms, thanks to the dictionary between unitary and symmetric quantities provided by the Schur-Weyl duality.

81T13 ; 05E10 ; 60G65

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
- Normalized characters of the symmetric groups,
- Kerov polynomials and Kerov positivity conjecture,
- Stanley character polynomials and multirectangular coordinates of Young diagrams,
- Stanley character formula and maps,
- Jack characters
- characterization, partial results.

05E10 ; 05E16 ; 20C30 ; 05A15 ; 05C10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
- Normalized characters of the symmetric groups,
- Kerov polynomials and Kerov positivity conjecture,
- Stanley character polynomials and multirectangular coordinates of Young diagrams,
- Stanley character formula and maps,
- Jack characters
- characterization, partial results.

05E10 ; 05E05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
After Fourier series, the quantum Hopf-Burgers equation $v_t +vv_x = 0$ with periodic boundary conditions is equivalent to a system of coupled quantum harmonic oscillators, which may be prepared in Glauber's coherent states as initial conditions. Sending the displacement of each oscillator to infinity at the same rate, we (1) confirm and (2) determine corrections to the quantum-classical correspondence principle. After diagonalizing the Hamiltonian with Schur polynomials, this is equivalent to proving (1) the concentration of profiles of Young diagrams around a limit shape and (2) their global Gaussian fluctuations for Schur measures with symbol $v : T \to R$ on the unit circle $T$. We identify the emergent objects with the push-forward along $v$ of (1) the uniform measure on $T$ and (2) $H^{1/2}$ noise on $T$. Our proofs exploit the integrability of the model as described by Nazarov-Sklyanin (2013). As time permits, we discuss structural connections to the theory of the topological recursion.[-]
After Fourier series, the quantum Hopf-Burgers equation $v_t +vv_x = 0$ with periodic boundary conditions is equivalent to a system of coupled quantum harmonic oscillators, which may be prepared in Glauber's coherent states as initial conditions. Sending the displacement of each oscillator to infinity at the same rate, we (1) confirm and (2) determine corrections to the quantum-classical correspondence principle. After diagonalizing the ...[+]

05E10 ; 20G43 ; 37K10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Newton-Okounkov bodies for Grassmannians - Williams, Lauren K. (Author of the conference) | CIRM H

Multi angle

In joint work with Konstanze Rietsch (arXiv:1712.00447), we use the $\mathcal{X}$-cluster structure on the Grassmannian and the combinatorics of plabic graphs to associate a Newton-Okounkov body to each $\mathcal{X}$-cluster. This gives, for each $\mathcal{X}$-cluster, a toric degeneration of the Grassmannian. We also describe the Newton-Okounkov bodies quite explicitly: we show that their facets can be read off from $\mathcal{A}$-cluster expansions of the superpotential. And we give a combinatorial formula for the lattice points of the Newton-Okounkov bodies, which has a surprising interpretation in terms of quantum Schubert calculus.[-]
In joint work with Konstanze Rietsch (arXiv:1712.00447), we use the $\mathcal{X}$-cluster structure on the Grassmannian and the combinatorics of plabic graphs to associate a Newton-Okounkov body to each $\mathcal{X}$-cluster. This gives, for each $\mathcal{X}$-cluster, a toric degeneration of the Grassmannian. We also describe the Newton-Okounkov bodies quite explicitly: we show that their facets can be read off from $\mathcal{A}$-cluster ...[+]

05E10 ; 14M15 ; 14M25 ; 14M27

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux problème de Ulam-Hammersley, qui consiste à étudier la longueur d'une plus longue sous-suite croissante d'une permutation uniforme de {1,...,n}. Il est en fait fructueux de travailler avec une version «poissonisée» du problème, où la taille n est tirée selon une loi de Poisson, dont on fera tendre le paramètre vers l'infini afin d'étudier les asymptotiques.
Dans la première séance, nous verrons que la mesure de Plancherel poissonisée est en fait un processus déterminantal, dont le noyau de corrélation fait intervenir les fonctions de Bessel. Nous utiliserons pour cela le formalisme de l'espace de Fock fermionique. (Toutes les notions nécessaires seront introduites au fur et à mesure, de la manière la plus élémentaire possible.)
Dans la seconde séance, nous étudierons les différentes asymptotiques du noyau de corrélation, par une application élégante de la méthode du col due à Okounkov et Reshetikhin. Nous verrons en particulier apparaître un phénomène de forme-limite, le noyau sinus discret dans le cas des limites «bulk» et le noyau d'Airy dans la limite «edge». In fine, nous aboutirons à une preuve du théorème de Baik-Deift-Johansson (1998) énonçant que les fluctuations de la longueur d'une plus longue sous-suite croissante d'une permutation uniforme ont asymptotiquement la même distribution que la plus grande valeur propre d'une matrice hermitienne aléatoire.[-]
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux ...[+]

05A17 ; 05E10 ; 60C05 ; 60G55

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux problème de Ulam-Hammersley, qui consiste à étudier la longueur d'une plus longue sous-suite croissante d'une permutation uniforme de {1,...,n}. Il est en fait fructueux de travailler avec une version «poissonisée» du problème, où la taille n est tirée selon une loi de Poisson, dont on fera tendre le paramètre vers l'infini afin d'étudier les asymptotiques.
Dans la première séance, nous verrons que la mesure de Plancherel poissonisée est en fait un processus déterminantal, dont le noyau de corrélation fait intervenir les fonctions de Bessel. Nous utiliserons pour cela le formalisme de l'espace de Fock fermionique. (Toutes les notions nécessaires seront introduites au fur et à mesure, de la manière la plus élémentaire possible.)
Dans la seconde séance, nous étudierons les différentes asymptotiques du noyau de corrélation, par une application élégante de la méthode du col due à Okounkov et Reshetikhin. Nous verrons en particulier apparaître un phénomène de forme-limite, le noyau sinus discret dans le cas des limites «bulk» et le noyau d'Airy dans la limite «edge». In fine, nous aboutirons à une preuve du théorème de Baik-Deift-Johansson (1998) énonçant que les fluctuations de la longueur d'une plus longue sous-suite croissante d'une permutation uniforme ont asymptotiquement la même distribution que la plus grande valeur propre d'une matrice hermitienne aléatoire.[-]
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux ...[+]

05A17 ; 05E10 ; 60C05 ; 60G55

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Schubert calculus and self-dual puzzles - Halacheva, Iva (Author of the conference) | CIRM H

Multi angle

Puzzles are combinatorial objects developed by Knutson and Tao for computing the expansion of the product of two Grassmannian Schubert classes. I will describe how selfdual puzzles give the restriction of a Grassmannian Schubert class to the symplectic Grassmannian in equivariant cohomology. The proof uses the machinery of quantum integrable systems. Time permitting, I will also discuss some ideas about how to interpret and generalize this result using Lagrangian correspondences and Maulik-Okounkov stable classes.
This is joint work in progress with Allen Knutson and Paul Zinn-Justin.[-]
Puzzles are combinatorial objects developed by Knutson and Tao for computing the expansion of the product of two Grassmannian Schubert classes. I will describe how selfdual puzzles give the restriction of a Grassmannian Schubert class to the symplectic Grassmannian in equivariant cohomology. The proof uses the machinery of quantum integrable systems. Time permitting, I will also discuss some ideas about how to interpret and generalize this ...[+]

14M15 ; 05E10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Integrals on the space U(N) of unitary matrices have a large N expansion whose coefficients count factorisations of permutations into "monotone" sequences of transpositions. We will show how this classical story can be adapted to integrals on the complex Grassmannian Gr(M,N), which leads to a 1-parameter deformation of the aforementioned enumeration. The resulting polynomials obey remarkable properties, some known and some conjectural. The notion of topological recursion inspired this work and we will briefly attempt to explain how and why. (This is joint work with Xavier Coulter and Ellena Moskovsky.)[-]
Integrals on the space U(N) of unitary matrices have a large N expansion whose coefficients count factorisations of permutations into "monotone" sequences of transpositions. We will show how this classical story can be adapted to integrals on the complex Grassmannian Gr(M,N), which leads to a 1-parameter deformation of the aforementioned enumeration. The resulting polynomials obey remarkable properties, some known and some conjectural. The ...[+]

05A15 ; 05E10 ; 15B52 ; 60B20

Bookmarks Report an error