En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 82B20 12 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The two-periodic Aztec diamond is a dimer or random tiling model with three phases, solid, liquid and gas. The dimers form a determinantal point process with a somewhat complicated but explicit correlation kernel. I will discuss in some detail how the Airy point process can be found at the liquid-gas boundary by looking at suitable averages of height function differences. The argument is a rather complicated analysis using the cumulant approach and subtle cancellations. Joint work with Vincent Beffara and Sunil Chhita.[-]
The two-periodic Aztec diamond is a dimer or random tiling model with three phases, solid, liquid and gas. The dimers form a determinantal point process with a somewhat complicated but explicit correlation kernel. I will discuss in some detail how the Airy point process can be found at the liquid-gas boundary by looking at suitable averages of height function differences. The argument is a rather complicated analysis using the cumulant approach ...[+]

60K35 ; 60G55 ; 60C05 ; 82B20 ; 05B45

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Covering spaces and spanning trees - Cimasoni, David (Author of the conference) | CIRM H

Multi angle

The aim of this talk is to show how basic notions traditionally used in the study of "knotted embeddings in dimensions $3$ and $4$", such as covering spaces and representation theory, can have non-trivial applications in combinatorics and statistical mechanics. For example, we will show that for any finite covering $G'$ of a finite edge-weighted graph $G$, the spanning tree partition function on $G$ divides the spanning tree partition function on $G'$ (in the polynomial ring with variables given by the weights). Setting all the weights equal to $1$, this implies a theorem known since 30 years: the number of spanning trees on $G$ divides the number of spanning trees on $G'$. Other examples of such results will be presented.
Joint work (in progress) with Adrien Kassel.[-]
The aim of this talk is to show how basic notions traditionally used in the study of "knotted embeddings in dimensions $3$ and $4$", such as covering spaces and representation theory, can have non-trivial applications in combinatorics and statistical mechanics. For example, we will show that for any finite covering $G'$ of a finite edge-weighted graph $G$, the spanning tree partition function on $G$ divides the spanning tree partition function ...[+]

57M12 ; 05C30 ; 82B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Graphons and graphexes are limits of graphs which allow us to model and estimate properties of large-scale networks. In this pair of talks, we review the theory of dense graph limits, and give two alterative theories for limits of sparse graphs – one leading to unbounded graphons over probability spaces, and the other leading to bounded graphons (and graphexes) over sigma-finite measure spaces. Talk I, given by Jennifer, will review the general theory, highlight the unbounded graphons, and show how they can be used to consistently estimate properties of large sparse networks. This talk will also give an application of these sparse graphons to collaborative filtering on sparse bipartite networks. Talk II, given by Christian, will recast limits of dense graphs in terms of exchangeability and the Aldous Hoover Theorem, and generalize this to obtain sparse graphons and graphexes as limits of subgraph samples from sparse graph sequences. This will provide a dual view of sparse graph limits as processes and random measures, an approach which allows a generalization of many of the well-known results and techniques for dense graph sequences.[-]
Graphons and graphexes are limits of graphs which allow us to model and estimate properties of large-scale networks. In this pair of talks, we review the theory of dense graph limits, and give two alterative theories for limits of sparse graphs – one leading to unbounded graphons over probability spaces, and the other leading to bounded graphons (and graphexes) over sigma-finite measure spaces. Talk I, given by Jennifer, will review the general ...[+]

05C80 ; 05C60 ; 60F10 ; 82B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Lattice paths and heaps - Viennot, Xavier (Author of the conference) | CIRM H

Multi angle

Recently several papers appears on ArXiv, on various topics apparently unrelated such as: spin system observable (T. Helmuth, A. Shapira), Fibonacci polynomials (A. Garsia, G. Ganzberger), fully commutative elements in Coxeter groups (E. Bagno, R. Biagioli, F. Jouhet, Y. Roichman), reciprocity theorem for bounded Dyck paths (J. Cigler, C. Krattenthaler), uniform random spanning tree in graphs (L. Fredes, J.-F. Marckert). In each of these papers the theory of heaps of pieces plays a central role. We propose a walk relating these topics, starting from the well-known loop erased random walk model (LERW), going around the classical bijection between lattice paths and heaps of cycles, and a second less known bijection due to T. Helmuth between lattice paths and heaps of oriented loops, in relation with the Ising model in physics, totally non-backtracking paths and zeta function in graphs. Dyck paths, these two bijections involve heaps of dimers and heaps of segments. A duality between these two kinds of heaps appears in some of the above papers, in relation with orthogonal polynomials and fully commutative elements. If time allows we will finish this excursion with the correspondence between heaps of segments, staircase polygons and q-Bessel functions.[-]
Recently several papers appears on ArXiv, on various topics apparently unrelated such as: spin system observable (T. Helmuth, A. Shapira), Fibonacci polynomials (A. Garsia, G. Ganzberger), fully commutative elements in Coxeter groups (E. Bagno, R. Biagioli, F. Jouhet, Y. Roichman), reciprocity theorem for bounded Dyck paths (J. Cigler, C. Krattenthaler), uniform random spanning tree in graphs (L. Fredes, J.-F. Marckert). In each of these papers ...[+]

01A55 ; 05A15 ; 11B39 ; 20F55 ; 82B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
There is the same number of $n \times n$ alternating sign matrices (ASMs) as there is of descending plane partitions (DPPs) with parts no greater than $n$, but finding an explicit bijection is, despite many efforts, an open problem for about $40$ years now. So far, four pairs of statistics that have the same joint distribution have been identified. We introduce extensions of ASMs and of DPPs along with $n+3$ pairs of statistics that have the same joint distribution. The ASM-DPP equinumerosity is obtained as an easy consequence by considering the $(-1)$enumerations of these extended objects with respect to one pair of the $n+3$ pairs of statistics. One important tool of our proof is a multivariate generalization of the operator formula for the number of monotone triangles with prescribed bottom row that generalizes Schur functions. Joint work with Florian Aigner.[-]
There is the same number of $n \times n$ alternating sign matrices (ASMs) as there is of descending plane partitions (DPPs) with parts no greater than $n$, but finding an explicit bijection is, despite many efforts, an open problem for about $40$ years now. So far, four pairs of statistics that have the same joint distribution have been identified. We introduce extensions of ASMs and of DPPs along with $n+3$ pairs of statistics that have the ...[+]

05A05 ; 05A15 ; 05A19 ; 15B35 ; 82B20 ; 82B23

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will first introduce a general class of mean-field-like spin systems with random couplings that comprises both the Ising model on inhomogeneous dense random graphs and the randomly diluted Hopfield model. I will then present quantitative estimates of metastability in large volumes at fixed temperatures when these systems evolve according to a Glauber dynamics, i.e. where spins flip with Metropolis rates at inverse temperature $\beta $. The main result identifies conditions ensuring that with high probability the system behaves like the corresponding system where the random couplings are replaced by their averages. More precisely, we prove that the metastability of the former system is implied with high probability by the metastability of the latter. Moreover, we consider relevant metastable hitting times of the two systems and find the asymptotic tail behaviour and the moments of their ratio. This result provides an extension of the results known for the Ising model on the the Erdos-Renyi random graph. Our proofs use the potential-theoretic approach to metastability in combination with concentration inequalities.
Based on a joint work in collaboration with Anton Bovier, Frank den Hollander, Saeda Marello and Martin Slowik.[-]
I will first introduce a general class of mean-field-like spin systems with random couplings that comprises both the Ising model on inhomogeneous dense random graphs and the randomly diluted Hopfield model. I will then present quantitative estimates of metastability in large volumes at fixed temperatures when these systems evolve according to a Glauber dynamics, i.e. where spins flip with Metropolis rates at inverse temperature $\beta $. The ...[+]

60K35 ; 60K37 ; 82B20 ; 82B44 ; 82C44

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Après avoir expliqué la notion de Z-invariance pour les modèles de mécanique statistique, nous introduisons une famille à un paramètre (dépendant du module elliptique) de Laplaciens massiques Z-invariants définis sur les graphes isoradiaux. Nous démontrons une formule explicite pour son inverse, la fonction de Green massique, qui a la propriété remarquable de ne dépendre que de la géométrie locale du graphe. Nous expliquerons les conséquences de ce résultat pour le modèle des forêts couvrantes, en particulier la preuve d'une transition de phase d'ordre 2 avec le modèle des arbre couvrants critiques sur les graphes isoradiaux, introduit par Kenyon. Finalement, nous considérons la courbe spectrale de ce Laplacien massique et montrons qu'il s'agit d'une courbe de Harnack de genre 1.
Il s'agit d'un travail en collaboration avec Cédric Boutillier et Kilian Raschel.[-]
Après avoir expliqué la notion de Z-invariance pour les modèles de mécanique statistique, nous introduisons une famille à un paramètre (dépendant du module elliptique) de Laplaciens massiques Z-invariants définis sur les graphes isoradiaux. Nous démontrons une formule explicite pour son inverse, la fonction de Green massique, qui a la propriété remarquable de ne dépendre que de la géométrie locale du graphe. Nous expliquerons les conséquences de ...[+]

82B20 ; 82B23 ; 82B41 ; 14H52 ; 14H70

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Chemins du plan évitant un quadrant - Bousquet-Mélou, Mireille (Author of the conference) | CIRM H

Multi angle

Les chemins du plan confinés dans un quadrant, ou plus généralement dans un cône convexe, ont été beaucoup étudiés ces dernières années, et ont donné lieu à de jolis résultats. Le plus remarquable dit que, pour les chemins à petits pas, la série génératrice est différentiellement finie si et seulement si un certain groupe de transformations rationnelles, construit à partir des pas autorisés, est fini. Les méthodes employées, allant de l'algèbre élémentaire sur les séries formelles à l'analyse complexe, en passant, entre autres, par le calcul formel, sont variées, ce qui participe au charme du sujet. Mais quid des chemins dans un cône non convexe, et, typiquement, des chemins évitant un quadrant ? On étudiera les deux cas les plus naturels (pas NSEO, quadrant négatif ou quadrant Ouest interdit), en esquissant avec optimisme ce que pourrait être une classification pour ce problème.[-]
Les chemins du plan confinés dans un quadrant, ou plus généralement dans un cône convexe, ont été beaucoup étudiés ces dernières années, et ont donné lieu à de jolis résultats. Le plus remarquable dit que, pour les chemins à petits pas, la série génératrice est différentiellement finie si et seulement si un certain groupe de transformations rationnelles, construit à partir des pas autorisés, est fini. Les méthodes employées, allant de l'algèbre ...[+]

82B20 ; 05A15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Polariton graph simulators - Berloff, Natalia (Author of the conference) | CIRM H

Multi angle

We propose a platform for finding the global minimum of XY Hamiltonian with polariton graphs. We derive an approximate analytic solution to the spinless complex Ginzburg-Landau equation that describes the density and kinetics of a polariton condensate under incoherent pumping. The analytic expression of the wavefunction is used as the building block for constructing the XY Hamiltonian of two-dimensional polariton graphs. We illustrate examples of the quantum simulator for various classical magnetic phases on some simple lattice geometries: linear, triangular, square.[-]
We propose a platform for finding the global minimum of XY Hamiltonian with polariton graphs. We derive an approximate analytic solution to the spinless complex Ginzburg-Landau equation that describes the density and kinetics of a polariton condensate under incoherent pumping. The analytic expression of the wavefunction is used as the building block for constructing the XY Hamiltonian of two-dimensional polariton graphs. We illustrate examples ...[+]

82B20 ; 81T80 ; 35Q56

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I shall talk about an old, but not always correctly understood, paper which we wrote with N. Reshetikhin.

82B23 ; 82B20 ; 81T40 ; 81R50

Bookmarks Report an error