Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Multivariate extreme value distributions are a common choice for modelling multivariate extremes. In high dimensions, however, the construction of flexible and parsimonious models is challenging. We propose to combine bivariate extreme value distributions into a Markov random field with respect to a tree. Although in general not an extreme value distribution itself, this Markov tree is attracted by a multivariate extreme value distribution. The latter serves as a tree-based approximation to an unknown extreme value distribution with the given bivariate distributions as margins. Given data, we learn an appropriate tree structure by Prim's algorithm with estimated pairwise upper tail dependence coefficients or Kendall's tau values as edge weights. The distributions of pairs of connected variables can be fitted in various ways. The resulting tree-structured extreme value distribution allows for inference on rare event probabilities, as illustrated on river discharge data from the upper Danube basin.
[-]
Multivariate extreme value distributions are a common choice for modelling multivariate extremes. In high dimensions, however, the construction of flexible and parsimonious models is challenging. We propose to combine bivariate extreme value distributions into a Markov random field with respect to a tree. Although in general not an extreme value distribution itself, this Markov tree is attracted by a multivariate extreme value distribution. The ...
[+]
62G32 ; 62G30 ; 62H22
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In extreme value statistics, the tail index is used to measure the occurrence and the intensity of extreme events. In many applied fields, the tail behavior of such events depends on explanatory variables. This article proposes an ensemble learning method for tail index regression which is called Hill random forests and combines Hill's approach on tail index estimation (Hill (1975)) with the aggregation of randomized decision trees based on the gamma deviance. We prove a consistency result when the tail index function is a multiplicative function.
[-]
In extreme value statistics, the tail index is used to measure the occurrence and the intensity of extreme events. In many applied fields, the tail behavior of such events depends on explanatory variables. This article proposes an ensemble learning method for tail index regression which is called Hill random forests and combines Hill's approach on tail index estimation (Hill (1975)) with the aggregation of randomized decision trees based on the ...
[+]
62G32 ; 62G20
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
V
- xi, 257 p.
Call n° : 00035063
reconnaissance de forme # méthode a contrario # méthode de sélection des lignes de niveau # algorithme SIFT # regroupement de formes # analyse d'image # inférence non paramétrique # base de données
62C05 ; 62G10 ; 62G32 ; 62H11 ; 62H15 ; 62H30 ; 62H35 ; 68T10 ; 68T45 ; 68U10 ; 94A08 ; 94A13 ; 94B70
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
V
- vii; 117 p.
Call n° : 00035358
distribution # modèle mathématique # devellopement asymptotique # processus stochastique # variation régulière # convolution # ARMA # sommes composées # distribution infiniment divisible # théorie du renouvellement
41A60 ; 60F99 ; 41A80 ; 44A35 ; 60E07 ; 60G50 ; 60K05 ; 60K25 ; 62E17 ; 62G32
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We give an asymptotic theory for the eigenvalues of the sample covariance matrix of a multivariate time series. The time series constitutes a linear process across time and between components. The input noise of the linear process has regularly varying tails with index $\alpha \in \left ( 0,4 \right )$; in particular, the time series has infinite fourth moment. We derive the limiting behavior for the largest eigenvalues of the sample covariance matrix and show point process convergence of the normalized eigenvalues. The limiting process has an explicit form involving points of a Poisson process and eigenvalues of a non-negative denite matrix. Based on this convergence we derive limit theory for a host of other continuous functionals of the eigenvalues, including the joint convergence of the largest eigenvalues, the joint convergence of the largest eigenvalue and the trace of the sample covariance matrix, and the ratio of the largest eigenvalue to their sum. This is joint work with Richard A. Davis (Columbia NY) and Oliver Pfaffel (Munich).
[-]
We give an asymptotic theory for the eigenvalues of the sample covariance matrix of a multivariate time series. The time series constitutes a linear process across time and between components. The input noise of the linear process has regularly varying tails with index $\alpha \in \left ( 0,4 \right )$; in particular, the time series has infinite fourth moment. We derive the limiting behavior for the largest eigenvalues of the sample covariance ...
[+]
62G32 ; 60G55
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
V
- 375p.
Call n° : 00030145
théorie du risque # haut risque # processus ponctuels # modèle stochastique # décomposition spectrale # valeur extreme # application aux sciences sociales et comportementales
60G70 ; 60F99 ; 91B30 ; 91B70 ; 62G32 ; 60G55
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
V
- xii; 273 p.
Call n° : 00035728
géométrie stochastique # théorie de la Gestalt # analyse d'images # traitement d'image # tomographie # vision assistée par ordinateur # géométrie stochastique # probabilités
62H35 ; 68T45 ; 68U10 ; 94A08 ; 62G32 ; 68-02 ; 92C55
Déposez votre fichier ici pour le déplacer vers cet enregistrement.